youssefkhalil320's picture
Upload folder using huggingface_hub
313fc8a verified
|
raw
history blame
14.4 kB
metadata
base_model: sentence-transformers/all-MiniLM-L6-v2
language:
  - en
library_name: sentence-transformers
license: apache-2.0
pipeline_tag: sentence-similarity
tags:
  - sentence-transformers
  - sentence-similarity
  - feature-extraction
  - generated_from_trainer
  - dataset_size:1830648
  - loss:AnglELoss
widget:
  - source_sentence: crunchy chips
    sentences:
      - big chips spiced gouda
      - purse
      - macaroni
  - source_sentence: genuine leather luggage
    sentences:
      - janatte luggage
      - bomb chemise
      - purse
  - source_sentence: head covers Rashguard
    sentences:
      - Double Shaded Blue Clutch
      - Rashguard
      - bathing costume
  - source_sentence: hand Made Sweatpants
    sentences:
      - acid cleanser
      - reflective weave sweatpants
      - rashguard
  - source_sentence: siamy wrap
    sentences:
      - siamy
      - hair revival
      - backpack

all-MiniLM-L6-v5-pair_score

This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L6-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: sentence-transformers/all-MiniLM-L6-v2
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 384 tokens
  • Similarity Function: Cosine Similarity
  • Language: en
  • License: apache-2.0

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
    'siamy wrap',
    'siamy',
    'hair revival',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • learning_rate: 2e-05
  • num_train_epochs: 2
  • warmup_ratio: 0.1
  • fp16: True

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 128
  • per_device_eval_batch_size: 128
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 2e-05
  • weight_decay: 0.0
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 1.0
  • num_train_epochs: 2
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: True
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: False
  • resume_from_checkpoint: None
  • hub_model_id: None
  • hub_strategy: every_save
  • hub_private_repo: False
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: False
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • batch_sampler: batch_sampler
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss loss
0.0070 100 16.865 -
0.0140 200 16.1556 -
0.0210 300 14.8008 -
0.0280 400 12.4025 -
0.0350 500 9.7465 -
0.0420 600 8.448 -
0.0489 700 8.1951 -
0.0559 800 8.1093 -
0.0629 900 8.0567 -
0.0699 1000 8.0401 -
0.0769 1100 7.9491 -
0.0839 1200 7.9494 -
0.0909 1300 7.9386 -
0.0979 1400 7.9033 -
0.1049 1500 7.9055 -
0.1119 1600 7.9203 -
0.1189 1700 7.8381 -
0.1259 1800 7.8679 -
0.1328 1900 7.8686 -
0.1398 2000 7.8252 -
0.1468 2100 7.856 -
0.1538 2200 7.8301 -
0.1608 2300 7.8595 -
0.1678 2400 7.8138 -
0.1748 2500 7.812 -
0.1818 2600 7.8261 -
0.1888 2700 7.7988 -
0.1958 2800 7.7965 -
0.2028 2900 7.783 -
0.2098 3000 7.7752 -
0.2168 3100 7.7715 -
0.2237 3200 7.7903 -
0.2307 3300 7.7656 -
0.2377 3400 7.749 -
0.2447 3500 7.7662 -
0.2517 3600 7.7492 -
0.2587 3700 7.737 -
0.2657 3800 7.7232 -
0.2727 3900 7.7616 -
0.2797 4000 7.7391 -
0.2867 4100 7.7552 -
0.2937 4200 7.7273 -
0.3007 4300 7.7216 -
0.3076 4400 7.7371 -
0.3146 4500 7.7426 -
0.3216 4600 7.7406 -
0.3286 4700 7.712 -
0.3356 4800 7.7466 -
0.3426 4900 7.7058 -
0.3496 5000 7.7139 7.6896
0.3566 5100 7.7457 -
0.3636 5200 7.7172 -
0.3706 5300 7.739 -
0.3776 5400 7.7259 -
0.3846 5500 7.6977 -
0.3916 5600 7.7237 -
0.3985 5700 7.7118 -
0.4055 5800 7.7099 -
0.4125 5900 7.7142 -
0.4195 6000 7.6885 -
0.4265 6100 7.6799 -
0.4335 6200 7.7039 -
0.4405 6300 7.6825 -
0.4475 6400 7.6846 -
0.4545 6500 7.7078 -
0.4615 6600 7.6945 -
0.4685 6700 7.7017 -
0.4755 6800 7.6781 -
0.4825 6900 7.6885 -
0.4894 7000 7.7426 -
0.4964 7100 7.6809 -
0.5034 7200 7.6977 -
0.5104 7300 7.6964 -
0.5174 7400 7.6834 -
0.5244 7500 7.6593 -
0.5314 7600 7.6745 -
0.5384 7700 7.6587 -
0.5454 7800 7.6389 -
0.5524 7900 7.6298 -
0.5594 8000 7.6693 -
0.5664 8100 7.6454 -
0.5733 8200 7.6491 -
0.5803 8300 7.661 -
0.5873 8400 7.6525 -
0.5943 8500 7.6669 -
0.6013 8600 7.6379 -
0.6083 8700 7.6706 -
0.6153 8800 7.6487 -
0.6223 8900 7.6607 -
0.6293 9000 7.6334 -
0.6363 9100 7.6891 -
0.6433 9200 7.734 -
0.6503 9300 7.6283 -
0.6573 9400 7.6461 -
0.6642 9500 7.623 -
0.6712 9600 7.6251 -
0.6782 9700 7.6663 -
0.6852 9800 7.6376 -
0.6922 9900 7.6834 -
0.6992 10000 7.6851 7.6099
0.7062 10100 7.6034 -
0.7132 10200 7.6512 -
0.7202 10300 7.6413 -
0.7272 10400 7.6083 -
0.7342 10500 7.6475 -
0.7412 10600 7.61 -
0.7481 10700 7.6404 -
0.7551 10800 7.6308 -
0.7621 10900 7.638 -
0.7691 11000 7.5954 -
0.7761 11100 7.6037 -
0.7831 11200 7.6405 -
0.7901 11300 7.6396 -
0.7971 11400 7.5898 -
0.8041 11500 7.644 -
0.8111 11600 7.639 -
0.8181 11700 7.6146 -
0.8251 11800 7.6076 -
0.8321 11900 7.5997 -
0.8390 12000 7.6196 -

Framework Versions

  • Python: 3.8.10
  • Sentence Transformers: 3.1.1
  • Transformers: 4.45.2
  • PyTorch: 2.4.1+cu118
  • Accelerate: 1.0.1
  • Datasets: 3.0.1
  • Tokenizers: 0.20.3

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

AnglELoss

@misc{li2023angleoptimized,
    title={AnglE-optimized Text Embeddings},
    author={Xianming Li and Jing Li},
    year={2023},
    eprint={2309.12871},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}