ysdede's picture
End of training
b1b6709 verified
metadata
library_name: transformers
language:
  - tr
license: mit
base_model: openai/whisper-large-v3-turbo
tags:
  - generated_from_trainer
datasets:
  - khanacademy
  - turkish
  - stem
  - asr
metrics:
  - wer
model-index:
  - name: whisper-khanacademy-large-v3-turbo-tr
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: ysdede/khanacademy-turkish
          type: khanacademy
        metrics:
          - name: Wer
            type: wer
            value: 15.695132614398135

whisper-khanacademy-large-v3-turbo-tr

This model is a fine-tuned version of openai/whisper-large-v3-turbo on the ysdede/khanacademy-turkish dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2129
  • Wer: 15.6951

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 64
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.15
  • training_steps: 1204
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2298 0.1429 172 0.2418 16.5877
0.2157 0.2857 344 0.2255 15.9611
0.1668 1.0939 516 0.2227 15.7461
0.1752 1.2367 688 0.2159 15.8846
0.1492 2.0449 860 0.2187 15.7571
0.1592 2.1877 1032 0.2134 15.5421
0.1336 2.3306 1204 0.2129 15.6951

Framework versions

  • Transformers 4.48.0.dev0
  • Pytorch 2.5.1+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0