Qwen2.5-med-book-main-classification
The model is an intermediate product of the EPCD (Easy-Data-Clean-Pipeline) project, primarily used to distinguish between the main content and non-content (such as book introductions, publisher information, writing standards, revision notes) of medical textbooks after performing OCR using MinerU. The base model uses Qwen2.5-0.5B, avoiding the length limitation of the Bert Tokenizer while providing higher accuracy.
Data Composition
- The data consists of scanned PDF copies of textbooks, converted into
Markdown
files throughOCR
using MinerU. After a simple regex-based cleaning, the samples were split using\n
, and aBloom
probabilistic filter was used for precise deduplication, resulting in 50,000 samples. Due to certain legal considerations, we may not plan to make the dataset publicly available. - Due to the nature of textbooks, most samples are main content. According to statistics, in our dataset, 79.89% (40,000) are main content samples, while 20.13% (10,000) are non-content samples. Considering data imbalance, we evaluate the model's performance on both Precision and Accuracy metrics on the test set.
- To ensure consistency in the data distribution between the test set and the training set, we used stratified sampling to select 10% of the data as the test set.
Training Techniques
- To maximize model accuracy, we used Bayesian optimization (TPE algorithm) and Hyperband pruning (HyperbandPruner) to accelerate hyperparameter tuning.
Model Performance
Dataset | Accuracy | Precision |
---|---|---|
Train | 0.9894 | 0.9673 |
Test | 0.9788 | 0.9548 |
Usage
import torch
from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer
ID2LABEL = {0: "正文", 1: "非正文"}
model_name = 'ytzfhqs/Qwen2.5-med-book-main-classification'
model = AutoModelForSequenceClassification.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
text = '下列为修订说明'
encoding = tokenizer(text, return_tensors='pt')
encoding = {k: v.to(model.device) for k, v in encoding.items()}
outputs = model(**encoding)
logits = outputs.logits
id = torch.argmax(logits, dim=-1).item()
response = ID2LABEL[id]
print(response)
# "非正文"
For Batch Usage
import torch
from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer
ID2LABEL = {0: "正文", 1: "非正文"}
model_name = 'ytzfhqs/Qwen2.5-med-book-main-classification'
model = AutoModelForSequenceClassification.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
text = ['下列为修订说明','阴离子间隙是一项受到广泛重视的酸碱指标。AG是一个计算值,指血浆中未测定的阴离子与未测定的阳离子的差值,正常机体血浆中的阳离子与阴离子总量相等,均为151mmol/L,从而维持电荷平衡。']
encoding = tokenizer(text, return_tensors='pt',padding=True)
encoding = {k: v.to(model.device) for k, v in encoding.items()}
outputs = model(**encoding)
logits = outputs.logits
ids = torch.argmax(logits, dim=-1).tolist()
response = [ID2LABEL[id] for id in ids]
print(response)
# ['非正文', '正文']
Qwen2.5-med-book-main-classification
该模型为EPCD(Easy-Data-Clean-Pipeline)项目的中间产物,主要用来区分使用MinerU进行OCR后的医学教科书的正文与非正文(书本简介、出版社信息、编写规范、修订说明)样本。基础模型使用Qwen2.5-0.5B,避免了Bert Tokenizer长度的限制,并且提供了更高的精度。
数据组成
- 数据由教科书PDF扫描件,经过MinerU进行
OCR
后生成的Markdown
文件。经过简单的正则化清洗,使用\n
进行分割样本,经过Bloom
概率过滤器精准去重,最终产生了5W条样本。由于涉及一些法律条款,我们可能没有计划公开数据集。 - 由于教科书的特性,样本大多为正文样本,根据统计,在我们的数据集中,正文样本占总样本的79.89%(4W条),非正文样本占总样本的20.13%(1W条)。由于数据的不平衡性,我们综合考虑模型在测试集上的Precision和Accuracy指标。
- 为了保证测试集与训练集数据分布一致,我们使用分层抽样,选取10%的数据构成测试集。
训练技巧
- 为了尽可能提高模型精度,我们使用了贝叶斯优化(TPE算法)和Hyperband修剪器(HyperbandPruner)加快模型调参效率。
模型表现
Dataset | Accuracy | Precision |
---|---|---|
Train | 0.9894 | 0.9673 |
Test | 0.9788 | 0.9548 |
Usage
import torch
from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer
ID2LABEL = {0: "正文", 1: "非正文"}
model_name = 'ytzfhqs/Qwen2.5-med-book-main-classification'
model = AutoModelForSequenceClassification.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name)
text = '下列为修订说明'
encoding = tokenizer(text, return_tensors='pt')
encoding = {k: v.to(model.device) for k, v in encoding.items()}
outputs = model(**encoding)
logits = outputs.logits
id = torch.argmax(logits, dim=-1).item()
response = ID2LABEL[id]
print(response)
# "非正文"
For Batch Usage
import torch
from transformers import AutoModelForSequenceClassification
from transformers import AutoTokenizer
ID2LABEL = {0: "正文", 1: "非正文"}
model_name = 'ytzfhqs/Qwen2.5-med-book-main-classification'
model = AutoModelForSequenceClassification.from_pretrained(
model_name,
torch_dtype="auto",
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(model_name, padding_side="left")
text = ['下列为修订说明','阴离子间隙是一项受到广泛重视的酸碱指标。AG是一个计算值,指血浆中未测定的阴离子与未测定的阳离子的差值,正常机体血浆中的阳离子与阴离子总量相等,均为151mmol/L,从而维持电荷平衡。']
encoding = tokenizer(text, return_tensors='pt',padding=True)
encoding = {k: v.to(model.device) for k, v in encoding.items()}
outputs = model(**encoding)
logits = outputs.logits
ids = torch.argmax(logits, dim=-1).tolist()
response = [ID2LABEL[id] for id in ids]
print(response)
# ['非正文', '正文']
- Downloads last month
- 2
Model tree for ytzfhqs/Qwen2.5-med-book-main-classification
Base model
Qwen/Qwen2.5-0.5B