|
--- |
|
library_name: transformers |
|
pipeline_tag: text-generation |
|
inference: true |
|
widget: |
|
- text: Hello! |
|
example_title: Hello world |
|
group: Python |
|
--- |
|
|
|
This model is for debugging. It is randomly initialized using the config from [deepseek-ai/DeepSeek-V2-Chat-0628](https://huggingface.co/deepseek-ai/DeepSeek-V2-Chat-0628) but with smaller size. |
|
|
|
Codes: |
|
```python |
|
from huggingface_hub import create_repo, upload_folder |
|
from transformers import ( |
|
pipeline, |
|
set_seed, |
|
AutoConfig, |
|
AutoModelForCausalLM, |
|
AutoTokenizer, |
|
GenerationConfig, |
|
) |
|
import torch |
|
import transformers |
|
import os |
|
|
|
model_id = "deepseek-ai/DeepSeek-V2-Chat-0628" |
|
repo_id = "yujiepan/deepseek-v2-0628-tiny-random" |
|
save_path = f"/tmp/{repo_id}" |
|
|
|
config = AutoConfig.from_pretrained(model_id, trust_remote_code=True) |
|
config._name_or_path = model_id |
|
config.hidden_size = 8 |
|
config.intermediate_size = 16 |
|
config.moe_intermediate_size = 4 |
|
config.num_attention_heads = 2 |
|
config.num_key_value_heads = 2 |
|
config.num_hidden_layers = 2 |
|
config.kv_lora_rank = 2 |
|
config.q_lora_rank = 2 |
|
config.v_head_dim = 2 |
|
config.qk_nope_head_dim = 2 |
|
config.qk_rope_head_dim = 2 |
|
config.torch_dtype = "bfloat16" |
|
print(config) |
|
|
|
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) |
|
tokenizer.save_pretrained(save_path) |
|
|
|
model = AutoModelForCausalLM.from_config( |
|
config, torch_dtype=torch.bfloat16, attn_implementation="eager", trust_remote_code=True |
|
) |
|
model.generation_config = GenerationConfig.from_pretrained(model_id, trust_remote_code=True) |
|
|
|
set_seed(42) |
|
with torch.no_grad(): |
|
for _, p in sorted(model.named_parameters()): |
|
torch.nn.init.uniform_(p, -0.1, 0.1) |
|
|
|
model.save_pretrained(save_path) |
|
|
|
# pipe = pipeline("text-generation", model=save_path, device="cuda", trust_remote_code=True) |
|
# print(pipe("Hello World!")) |
|
|
|
# messages = [ |
|
# {"role": "system", "content": "You are a robot."}, |
|
# {"role": "user", "content": "Hi!"}, |
|
# ] |
|
# chatbot = pipeline("text-generation", model=save_path, max_length=1000, max_new_tokens=16, trust_remote_code=True) |
|
# print(chatbot(messages)) |
|
|
|
messages = [{"role": "user", "content": "Write a piece of quicksort code in C++"}] |
|
input_tensor = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt") |
|
outputs = model.generate(input_tensor.to(model.device), max_new_tokens=100) |
|
result = tokenizer.decode(outputs[0][input_tensor.shape[1] :], skip_special_tokens=True) |
|
print(result) |
|
``` |
|
|