yuridrcosta's picture
End of training
a63ea78 verified
metadata
license: apache-2.0
base_model: google-bert/bert-base-uncased
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: bert-base-uncased-finetuned-ner
    results: []

bert-base-uncased-finetuned-ner

This model is a fine-tuned version of google-bert/bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.7238
  • Precision: 0.3864
  • Recall: 0.2742
  • F1: 0.3208
  • Accuracy: 0.9134

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 16 0.6017 0.4286 0.2258 0.2958 0.9187
No log 2.0 32 0.6134 0.3311 0.2688 0.2967 0.9075
No log 3.0 48 0.5969 0.3525 0.2634 0.3015 0.9096
No log 4.0 64 0.6446 0.3208 0.2742 0.2957 0.9071
No log 5.0 80 0.6219 0.4182 0.2473 0.3108 0.9176
No log 6.0 96 0.6519 0.3401 0.2688 0.3003 0.9103
No log 7.0 112 0.6576 0.3551 0.2634 0.3025 0.9120
No log 8.0 128 0.6534 0.3676 0.2688 0.3106 0.9106
No log 9.0 144 0.6522 0.3732 0.2849 0.3232 0.9124
No log 10.0 160 0.6879 0.3503 0.2957 0.3207 0.9078
No log 11.0 176 0.6825 0.3696 0.2742 0.3148 0.9124
No log 12.0 192 0.7115 0.3732 0.2849 0.3232 0.9120
No log 13.0 208 0.7013 0.3984 0.2742 0.3248 0.9138
No log 14.0 224 0.7016 0.3732 0.2849 0.3232 0.9117
No log 15.0 240 0.7313 0.3643 0.2742 0.3129 0.9110
No log 16.0 256 0.7267 0.3442 0.2849 0.3118 0.9082
No log 17.0 272 0.7159 0.3624 0.2903 0.3224 0.9096
No log 18.0 288 0.6946 0.3542 0.2742 0.3091 0.9099
No log 19.0 304 0.7017 0.3852 0.2796 0.3240 0.9127
No log 20.0 320 0.7229 0.3467 0.2796 0.3095 0.9089
No log 21.0 336 0.7188 0.3817 0.2688 0.3155 0.9124
No log 22.0 352 0.7269 0.3669 0.2742 0.3138 0.9110
No log 23.0 368 0.7248 0.3714 0.2796 0.3190 0.9113
No log 24.0 384 0.7235 0.3835 0.2742 0.3197 0.9131
No log 25.0 400 0.7238 0.3864 0.2742 0.3208 0.9134

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.20.0
  • Tokenizers 0.19.1