|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Conversion script for the LDM checkpoints. """ |
|
|
|
import argparse |
|
import os |
|
import re |
|
|
|
import torch |
|
|
|
|
|
try: |
|
from omegaconf import OmegaConf |
|
except ImportError: |
|
raise ImportError( |
|
"OmegaConf is required to convert the LDM checkpoints. Please install it with `pip install OmegaConf`." |
|
) |
|
|
|
from diffusers import ( |
|
AutoencoderKL, |
|
DDIMScheduler, |
|
DPMSolverMultistepScheduler, |
|
EulerAncestralDiscreteScheduler, |
|
EulerDiscreteScheduler, |
|
HeunDiscreteScheduler, |
|
LDMTextToImagePipeline, |
|
LMSDiscreteScheduler, |
|
PNDMScheduler, |
|
StableDiffusionPipeline, |
|
UNet2DConditionModel, |
|
) |
|
from diffusers.pipelines.latent_diffusion.pipeline_latent_diffusion import LDMBertConfig, LDMBertModel |
|
from diffusers.pipelines.paint_by_example import PaintByExampleImageEncoder, PaintByExamplePipeline |
|
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker |
|
from transformers import AutoFeatureExtractor, BertTokenizerFast, CLIPTextModel, CLIPTokenizer, CLIPVisionConfig |
|
|
|
|
|
def shave_segments(path, n_shave_prefix_segments=1): |
|
""" |
|
Removes segments. Positive values shave the first segments, negative shave the last segments. |
|
""" |
|
if n_shave_prefix_segments >= 0: |
|
return ".".join(path.split(".")[n_shave_prefix_segments:]) |
|
else: |
|
return ".".join(path.split(".")[:n_shave_prefix_segments]) |
|
|
|
|
|
def renew_resnet_paths(old_list, n_shave_prefix_segments=0): |
|
""" |
|
Updates paths inside resnets to the new naming scheme (local renaming) |
|
""" |
|
mapping = [] |
|
for old_item in old_list: |
|
new_item = old_item.replace("in_layers.0", "norm1") |
|
new_item = new_item.replace("in_layers.2", "conv1") |
|
|
|
new_item = new_item.replace("out_layers.0", "norm2") |
|
new_item = new_item.replace("out_layers.3", "conv2") |
|
|
|
new_item = new_item.replace("emb_layers.1", "time_emb_proj") |
|
new_item = new_item.replace("skip_connection", "conv_shortcut") |
|
|
|
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) |
|
|
|
mapping.append({"old": old_item, "new": new_item}) |
|
|
|
return mapping |
|
|
|
|
|
def renew_vae_resnet_paths(old_list, n_shave_prefix_segments=0): |
|
""" |
|
Updates paths inside resnets to the new naming scheme (local renaming) |
|
""" |
|
mapping = [] |
|
for old_item in old_list: |
|
new_item = old_item |
|
|
|
new_item = new_item.replace("nin_shortcut", "conv_shortcut") |
|
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) |
|
|
|
mapping.append({"old": old_item, "new": new_item}) |
|
|
|
return mapping |
|
|
|
|
|
def renew_attention_paths(old_list, n_shave_prefix_segments=0): |
|
""" |
|
Updates paths inside attentions to the new naming scheme (local renaming) |
|
""" |
|
mapping = [] |
|
for old_item in old_list: |
|
new_item = old_item |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
mapping.append({"old": old_item, "new": new_item}) |
|
|
|
return mapping |
|
|
|
|
|
def renew_vae_attention_paths(old_list, n_shave_prefix_segments=0): |
|
""" |
|
Updates paths inside attentions to the new naming scheme (local renaming) |
|
""" |
|
mapping = [] |
|
for old_item in old_list: |
|
new_item = old_item |
|
|
|
new_item = new_item.replace("norm.weight", "group_norm.weight") |
|
new_item = new_item.replace("norm.bias", "group_norm.bias") |
|
|
|
new_item = new_item.replace("q.weight", "query.weight") |
|
new_item = new_item.replace("q.bias", "query.bias") |
|
|
|
new_item = new_item.replace("k.weight", "key.weight") |
|
new_item = new_item.replace("k.bias", "key.bias") |
|
|
|
new_item = new_item.replace("v.weight", "value.weight") |
|
new_item = new_item.replace("v.bias", "value.bias") |
|
|
|
new_item = new_item.replace("proj_out.weight", "proj_attn.weight") |
|
new_item = new_item.replace("proj_out.bias", "proj_attn.bias") |
|
|
|
new_item = shave_segments(new_item, n_shave_prefix_segments=n_shave_prefix_segments) |
|
|
|
mapping.append({"old": old_item, "new": new_item}) |
|
|
|
return mapping |
|
|
|
|
|
def assign_to_checkpoint( |
|
paths, checkpoint, old_checkpoint, attention_paths_to_split=None, additional_replacements=None, config=None |
|
): |
|
""" |
|
This does the final conversion step: take locally converted weights and apply a global renaming |
|
to them. It splits attention layers, and takes into account additional replacements |
|
that may arise. |
|
Assigns the weights to the new checkpoint. |
|
""" |
|
assert isinstance(paths, list), "Paths should be a list of dicts containing 'old' and 'new' keys." |
|
|
|
|
|
if attention_paths_to_split is not None: |
|
for path, path_map in attention_paths_to_split.items(): |
|
old_tensor = old_checkpoint[path] |
|
channels = old_tensor.shape[0] // 3 |
|
|
|
target_shape = (-1, channels) if len(old_tensor.shape) == 3 else (-1) |
|
|
|
num_heads = old_tensor.shape[0] // config["num_head_channels"] // 3 |
|
|
|
old_tensor = old_tensor.reshape((num_heads, 3 * channels // num_heads) + old_tensor.shape[1:]) |
|
query, key, value = old_tensor.split(channels // num_heads, dim=1) |
|
|
|
checkpoint[path_map["query"]] = query.reshape(target_shape) |
|
checkpoint[path_map["key"]] = key.reshape(target_shape) |
|
checkpoint[path_map["value"]] = value.reshape(target_shape) |
|
|
|
for path in paths: |
|
new_path = path["new"] |
|
|
|
|
|
if attention_paths_to_split is not None and new_path in attention_paths_to_split: |
|
continue |
|
|
|
|
|
new_path = new_path.replace("middle_block.0", "mid_block.resnets.0") |
|
new_path = new_path.replace("middle_block.1", "mid_block.attentions.0") |
|
new_path = new_path.replace("middle_block.2", "mid_block.resnets.1") |
|
|
|
if additional_replacements is not None: |
|
for replacement in additional_replacements: |
|
new_path = new_path.replace(replacement["old"], replacement["new"]) |
|
|
|
|
|
if "proj_attn.weight" in new_path: |
|
checkpoint[new_path] = old_checkpoint[path["old"]][:, :, 0] |
|
else: |
|
checkpoint[new_path] = old_checkpoint[path["old"]] |
|
|
|
|
|
def conv_attn_to_linear(checkpoint): |
|
keys = list(checkpoint.keys()) |
|
attn_keys = ["query.weight", "key.weight", "value.weight"] |
|
for key in keys: |
|
if ".".join(key.split(".")[-2:]) in attn_keys: |
|
if checkpoint[key].ndim > 2: |
|
checkpoint[key] = checkpoint[key][:, :, 0, 0] |
|
elif "proj_attn.weight" in key: |
|
if checkpoint[key].ndim > 2: |
|
checkpoint[key] = checkpoint[key][:, :, 0] |
|
|
|
|
|
def create_unet_diffusers_config(original_config, image_size: int): |
|
""" |
|
Creates a config for the diffusers based on the config of the LDM model. |
|
""" |
|
unet_params = original_config.model.params.unet_config.params |
|
vae_params = original_config.model.params.first_stage_config.params.ddconfig |
|
|
|
block_out_channels = [unet_params.model_channels * mult for mult in unet_params.channel_mult] |
|
|
|
down_block_types = [] |
|
resolution = 1 |
|
for i in range(len(block_out_channels)): |
|
block_type = "CrossAttnDownBlock2D" if resolution in unet_params.attention_resolutions else "DownBlock2D" |
|
down_block_types.append(block_type) |
|
if i != len(block_out_channels) - 1: |
|
resolution *= 2 |
|
|
|
up_block_types = [] |
|
for i in range(len(block_out_channels)): |
|
block_type = "CrossAttnUpBlock2D" if resolution in unet_params.attention_resolutions else "UpBlock2D" |
|
up_block_types.append(block_type) |
|
resolution //= 2 |
|
|
|
vae_scale_factor = 2 ** (len(vae_params.ch_mult) - 1) |
|
|
|
head_dim = unet_params.num_heads if "num_heads" in unet_params else None |
|
use_linear_projection = ( |
|
unet_params.use_linear_in_transformer if "use_linear_in_transformer" in unet_params else False |
|
) |
|
if use_linear_projection: |
|
|
|
if head_dim is None: |
|
head_dim = [5, 10, 20, 20] |
|
|
|
config = dict( |
|
sample_size=image_size // vae_scale_factor, |
|
in_channels=unet_params.in_channels, |
|
out_channels=unet_params.out_channels, |
|
down_block_types=tuple(down_block_types), |
|
up_block_types=tuple(up_block_types), |
|
block_out_channels=tuple(block_out_channels), |
|
layers_per_block=unet_params.num_res_blocks, |
|
cross_attention_dim=unet_params.context_dim, |
|
attention_head_dim=head_dim, |
|
use_linear_projection=use_linear_projection, |
|
) |
|
|
|
return config |
|
|
|
|
|
def create_vae_diffusers_config(original_config, image_size: int): |
|
""" |
|
Creates a config for the diffusers based on the config of the LDM model. |
|
""" |
|
vae_params = original_config.model.params.first_stage_config.params.ddconfig |
|
_ = original_config.model.params.first_stage_config.params.embed_dim |
|
|
|
block_out_channels = [vae_params.ch * mult for mult in vae_params.ch_mult] |
|
down_block_types = ["DownEncoderBlock2D"] * len(block_out_channels) |
|
up_block_types = ["UpDecoderBlock2D"] * len(block_out_channels) |
|
|
|
config = dict( |
|
sample_size=image_size, |
|
in_channels=vae_params.in_channels, |
|
out_channels=vae_params.out_ch, |
|
down_block_types=tuple(down_block_types), |
|
up_block_types=tuple(up_block_types), |
|
block_out_channels=tuple(block_out_channels), |
|
latent_channels=vae_params.z_channels, |
|
layers_per_block=vae_params.num_res_blocks, |
|
) |
|
return config |
|
|
|
|
|
def create_diffusers_schedular(original_config): |
|
schedular = DDIMScheduler( |
|
num_train_timesteps=original_config.model.params.timesteps, |
|
beta_start=original_config.model.params.linear_start, |
|
beta_end=original_config.model.params.linear_end, |
|
beta_schedule="scaled_linear", |
|
) |
|
return schedular |
|
|
|
|
|
def create_ldm_bert_config(original_config): |
|
bert_params = original_config.model.parms.cond_stage_config.params |
|
config = LDMBertConfig( |
|
d_model=bert_params.n_embed, |
|
encoder_layers=bert_params.n_layer, |
|
encoder_ffn_dim=bert_params.n_embed * 4, |
|
) |
|
return config |
|
|
|
|
|
def convert_ldm_unet_checkpoint(checkpoint, config, path=None, extract_ema=False): |
|
""" |
|
Takes a state dict and a config, and returns a converted checkpoint. |
|
""" |
|
|
|
|
|
unet_state_dict = {} |
|
keys = list(checkpoint.keys()) |
|
|
|
unet_key = "model.diffusion_model." |
|
|
|
if sum(k.startswith("model_ema") for k in keys) > 100: |
|
print(f"Checkpoint {path} has both EMA and non-EMA weights.") |
|
if extract_ema: |
|
print( |
|
"In this conversion only the EMA weights are extracted. If you want to instead extract the non-EMA" |
|
" weights (useful to continue fine-tuning), please make sure to remove the `--extract_ema` flag." |
|
) |
|
for key in keys: |
|
if key.startswith("model.diffusion_model"): |
|
flat_ema_key = "model_ema." + "".join(key.split(".")[1:]) |
|
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(flat_ema_key) |
|
else: |
|
print( |
|
"In this conversion only the non-EMA weights are extracted. If you want to instead extract the EMA" |
|
" weights (usually better for inference), please make sure to add the `--extract_ema` flag." |
|
) |
|
|
|
for key in keys: |
|
if key.startswith(unet_key): |
|
unet_state_dict[key.replace(unet_key, "")] = checkpoint.pop(key) |
|
|
|
new_checkpoint = {} |
|
|
|
new_checkpoint["time_embedding.linear_1.weight"] = unet_state_dict["time_embed.0.weight"] |
|
new_checkpoint["time_embedding.linear_1.bias"] = unet_state_dict["time_embed.0.bias"] |
|
new_checkpoint["time_embedding.linear_2.weight"] = unet_state_dict["time_embed.2.weight"] |
|
new_checkpoint["time_embedding.linear_2.bias"] = unet_state_dict["time_embed.2.bias"] |
|
|
|
new_checkpoint["conv_in.weight"] = unet_state_dict["input_blocks.0.0.weight"] |
|
new_checkpoint["conv_in.bias"] = unet_state_dict["input_blocks.0.0.bias"] |
|
|
|
new_checkpoint["conv_norm_out.weight"] = unet_state_dict["out.0.weight"] |
|
new_checkpoint["conv_norm_out.bias"] = unet_state_dict["out.0.bias"] |
|
new_checkpoint["conv_out.weight"] = unet_state_dict["out.2.weight"] |
|
new_checkpoint["conv_out.bias"] = unet_state_dict["out.2.bias"] |
|
|
|
|
|
num_input_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "input_blocks" in layer}) |
|
input_blocks = { |
|
layer_id: [key for key in unet_state_dict if f"input_blocks.{layer_id}" in key] |
|
for layer_id in range(num_input_blocks) |
|
} |
|
|
|
|
|
num_middle_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "middle_block" in layer}) |
|
middle_blocks = { |
|
layer_id: [key for key in unet_state_dict if f"middle_block.{layer_id}" in key] |
|
for layer_id in range(num_middle_blocks) |
|
} |
|
|
|
|
|
num_output_blocks = len({".".join(layer.split(".")[:2]) for layer in unet_state_dict if "output_blocks" in layer}) |
|
output_blocks = { |
|
layer_id: [key for key in unet_state_dict if f"output_blocks.{layer_id}" in key] |
|
for layer_id in range(num_output_blocks) |
|
} |
|
|
|
for i in range(1, num_input_blocks): |
|
block_id = (i - 1) // (config["layers_per_block"] + 1) |
|
layer_in_block_id = (i - 1) % (config["layers_per_block"] + 1) |
|
|
|
resnets = [ |
|
key for key in input_blocks[i] if f"input_blocks.{i}.0" in key and f"input_blocks.{i}.0.op" not in key |
|
] |
|
attentions = [key for key in input_blocks[i] if f"input_blocks.{i}.1" in key] |
|
|
|
if f"input_blocks.{i}.0.op.weight" in unet_state_dict: |
|
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.weight"] = unet_state_dict.pop( |
|
f"input_blocks.{i}.0.op.weight" |
|
) |
|
new_checkpoint[f"down_blocks.{block_id}.downsamplers.0.conv.bias"] = unet_state_dict.pop( |
|
f"input_blocks.{i}.0.op.bias" |
|
) |
|
|
|
paths = renew_resnet_paths(resnets) |
|
meta_path = {"old": f"input_blocks.{i}.0", "new": f"down_blocks.{block_id}.resnets.{layer_in_block_id}"} |
|
assign_to_checkpoint( |
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config |
|
) |
|
|
|
if len(attentions): |
|
paths = renew_attention_paths(attentions) |
|
meta_path = {"old": f"input_blocks.{i}.1", "new": f"down_blocks.{block_id}.attentions.{layer_in_block_id}"} |
|
assign_to_checkpoint( |
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config |
|
) |
|
|
|
resnet_0 = middle_blocks[0] |
|
attentions = middle_blocks[1] |
|
resnet_1 = middle_blocks[2] |
|
|
|
resnet_0_paths = renew_resnet_paths(resnet_0) |
|
assign_to_checkpoint(resnet_0_paths, new_checkpoint, unet_state_dict, config=config) |
|
|
|
resnet_1_paths = renew_resnet_paths(resnet_1) |
|
assign_to_checkpoint(resnet_1_paths, new_checkpoint, unet_state_dict, config=config) |
|
|
|
attentions_paths = renew_attention_paths(attentions) |
|
meta_path = {"old": "middle_block.1", "new": "mid_block.attentions.0"} |
|
assign_to_checkpoint( |
|
attentions_paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config |
|
) |
|
|
|
for i in range(num_output_blocks): |
|
block_id = i // (config["layers_per_block"] + 1) |
|
layer_in_block_id = i % (config["layers_per_block"] + 1) |
|
output_block_layers = [shave_segments(name, 2) for name in output_blocks[i]] |
|
output_block_list = {} |
|
|
|
for layer in output_block_layers: |
|
layer_id, layer_name = layer.split(".")[0], shave_segments(layer, 1) |
|
if layer_id in output_block_list: |
|
output_block_list[layer_id].append(layer_name) |
|
else: |
|
output_block_list[layer_id] = [layer_name] |
|
|
|
if len(output_block_list) > 1: |
|
resnets = [key for key in output_blocks[i] if f"output_blocks.{i}.0" in key] |
|
attentions = [key for key in output_blocks[i] if f"output_blocks.{i}.1" in key] |
|
|
|
resnet_0_paths = renew_resnet_paths(resnets) |
|
paths = renew_resnet_paths(resnets) |
|
|
|
meta_path = {"old": f"output_blocks.{i}.0", "new": f"up_blocks.{block_id}.resnets.{layer_in_block_id}"} |
|
assign_to_checkpoint( |
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config |
|
) |
|
|
|
if ["conv.weight", "conv.bias"] in output_block_list.values(): |
|
index = list(output_block_list.values()).index(["conv.weight", "conv.bias"]) |
|
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.weight"] = unet_state_dict[ |
|
f"output_blocks.{i}.{index}.conv.weight" |
|
] |
|
new_checkpoint[f"up_blocks.{block_id}.upsamplers.0.conv.bias"] = unet_state_dict[ |
|
f"output_blocks.{i}.{index}.conv.bias" |
|
] |
|
|
|
|
|
if len(attentions) == 2: |
|
attentions = [] |
|
|
|
if len(attentions): |
|
paths = renew_attention_paths(attentions) |
|
meta_path = { |
|
"old": f"output_blocks.{i}.1", |
|
"new": f"up_blocks.{block_id}.attentions.{layer_in_block_id}", |
|
} |
|
assign_to_checkpoint( |
|
paths, new_checkpoint, unet_state_dict, additional_replacements=[meta_path], config=config |
|
) |
|
else: |
|
resnet_0_paths = renew_resnet_paths(output_block_layers, n_shave_prefix_segments=1) |
|
for path in resnet_0_paths: |
|
old_path = ".".join(["output_blocks", str(i), path["old"]]) |
|
new_path = ".".join(["up_blocks", str(block_id), "resnets", str(layer_in_block_id), path["new"]]) |
|
|
|
new_checkpoint[new_path] = unet_state_dict[old_path] |
|
|
|
return new_checkpoint |
|
|
|
|
|
def convert_ldm_vae_checkpoint(checkpoint, config): |
|
|
|
vae_state_dict = {} |
|
vae_key = "first_stage_model." |
|
keys = list(checkpoint.keys()) |
|
for key in keys: |
|
if key.startswith(vae_key): |
|
vae_state_dict[key.replace(vae_key, "")] = checkpoint.get(key) |
|
|
|
new_checkpoint = {} |
|
|
|
new_checkpoint["encoder.conv_in.weight"] = vae_state_dict["encoder.conv_in.weight"] |
|
new_checkpoint["encoder.conv_in.bias"] = vae_state_dict["encoder.conv_in.bias"] |
|
new_checkpoint["encoder.conv_out.weight"] = vae_state_dict["encoder.conv_out.weight"] |
|
new_checkpoint["encoder.conv_out.bias"] = vae_state_dict["encoder.conv_out.bias"] |
|
new_checkpoint["encoder.conv_norm_out.weight"] = vae_state_dict["encoder.norm_out.weight"] |
|
new_checkpoint["encoder.conv_norm_out.bias"] = vae_state_dict["encoder.norm_out.bias"] |
|
|
|
new_checkpoint["decoder.conv_in.weight"] = vae_state_dict["decoder.conv_in.weight"] |
|
new_checkpoint["decoder.conv_in.bias"] = vae_state_dict["decoder.conv_in.bias"] |
|
new_checkpoint["decoder.conv_out.weight"] = vae_state_dict["decoder.conv_out.weight"] |
|
new_checkpoint["decoder.conv_out.bias"] = vae_state_dict["decoder.conv_out.bias"] |
|
new_checkpoint["decoder.conv_norm_out.weight"] = vae_state_dict["decoder.norm_out.weight"] |
|
new_checkpoint["decoder.conv_norm_out.bias"] = vae_state_dict["decoder.norm_out.bias"] |
|
|
|
new_checkpoint["quant_conv.weight"] = vae_state_dict["quant_conv.weight"] |
|
new_checkpoint["quant_conv.bias"] = vae_state_dict["quant_conv.bias"] |
|
new_checkpoint["post_quant_conv.weight"] = vae_state_dict["post_quant_conv.weight"] |
|
new_checkpoint["post_quant_conv.bias"] = vae_state_dict["post_quant_conv.bias"] |
|
|
|
|
|
num_down_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "encoder.down" in layer}) |
|
down_blocks = { |
|
layer_id: [key for key in vae_state_dict if f"down.{layer_id}" in key] for layer_id in range(num_down_blocks) |
|
} |
|
|
|
|
|
num_up_blocks = len({".".join(layer.split(".")[:3]) for layer in vae_state_dict if "decoder.up" in layer}) |
|
up_blocks = { |
|
layer_id: [key for key in vae_state_dict if f"up.{layer_id}" in key] for layer_id in range(num_up_blocks) |
|
} |
|
|
|
for i in range(num_down_blocks): |
|
resnets = [key for key in down_blocks[i] if f"down.{i}" in key and f"down.{i}.downsample" not in key] |
|
|
|
if f"encoder.down.{i}.downsample.conv.weight" in vae_state_dict: |
|
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.weight"] = vae_state_dict.pop( |
|
f"encoder.down.{i}.downsample.conv.weight" |
|
) |
|
new_checkpoint[f"encoder.down_blocks.{i}.downsamplers.0.conv.bias"] = vae_state_dict.pop( |
|
f"encoder.down.{i}.downsample.conv.bias" |
|
) |
|
|
|
paths = renew_vae_resnet_paths(resnets) |
|
meta_path = {"old": f"down.{i}.block", "new": f"down_blocks.{i}.resnets"} |
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) |
|
|
|
mid_resnets = [key for key in vae_state_dict if "encoder.mid.block" in key] |
|
num_mid_res_blocks = 2 |
|
for i in range(1, num_mid_res_blocks + 1): |
|
resnets = [key for key in mid_resnets if f"encoder.mid.block_{i}" in key] |
|
|
|
paths = renew_vae_resnet_paths(resnets) |
|
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} |
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) |
|
|
|
mid_attentions = [key for key in vae_state_dict if "encoder.mid.attn" in key] |
|
paths = renew_vae_attention_paths(mid_attentions) |
|
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} |
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) |
|
conv_attn_to_linear(new_checkpoint) |
|
|
|
for i in range(num_up_blocks): |
|
block_id = num_up_blocks - 1 - i |
|
resnets = [ |
|
key for key in up_blocks[block_id] if f"up.{block_id}" in key and f"up.{block_id}.upsample" not in key |
|
] |
|
|
|
if f"decoder.up.{block_id}.upsample.conv.weight" in vae_state_dict: |
|
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.weight"] = vae_state_dict[ |
|
f"decoder.up.{block_id}.upsample.conv.weight" |
|
] |
|
new_checkpoint[f"decoder.up_blocks.{i}.upsamplers.0.conv.bias"] = vae_state_dict[ |
|
f"decoder.up.{block_id}.upsample.conv.bias" |
|
] |
|
|
|
paths = renew_vae_resnet_paths(resnets) |
|
meta_path = {"old": f"up.{block_id}.block", "new": f"up_blocks.{i}.resnets"} |
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) |
|
|
|
mid_resnets = [key for key in vae_state_dict if "decoder.mid.block" in key] |
|
num_mid_res_blocks = 2 |
|
for i in range(1, num_mid_res_blocks + 1): |
|
resnets = [key for key in mid_resnets if f"decoder.mid.block_{i}" in key] |
|
|
|
paths = renew_vae_resnet_paths(resnets) |
|
meta_path = {"old": f"mid.block_{i}", "new": f"mid_block.resnets.{i - 1}"} |
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) |
|
|
|
mid_attentions = [key for key in vae_state_dict if "decoder.mid.attn" in key] |
|
paths = renew_vae_attention_paths(mid_attentions) |
|
meta_path = {"old": "mid.attn_1", "new": "mid_block.attentions.0"} |
|
assign_to_checkpoint(paths, new_checkpoint, vae_state_dict, additional_replacements=[meta_path], config=config) |
|
conv_attn_to_linear(new_checkpoint) |
|
return new_checkpoint |
|
|
|
|
|
def convert_ldm_bert_checkpoint(checkpoint, config): |
|
def _copy_attn_layer(hf_attn_layer, pt_attn_layer): |
|
hf_attn_layer.q_proj.weight.data = pt_attn_layer.to_q.weight |
|
hf_attn_layer.k_proj.weight.data = pt_attn_layer.to_k.weight |
|
hf_attn_layer.v_proj.weight.data = pt_attn_layer.to_v.weight |
|
|
|
hf_attn_layer.out_proj.weight = pt_attn_layer.to_out.weight |
|
hf_attn_layer.out_proj.bias = pt_attn_layer.to_out.bias |
|
|
|
def _copy_linear(hf_linear, pt_linear): |
|
hf_linear.weight = pt_linear.weight |
|
hf_linear.bias = pt_linear.bias |
|
|
|
def _copy_layer(hf_layer, pt_layer): |
|
|
|
_copy_linear(hf_layer.self_attn_layer_norm, pt_layer[0][0]) |
|
_copy_linear(hf_layer.final_layer_norm, pt_layer[1][0]) |
|
|
|
|
|
_copy_attn_layer(hf_layer.self_attn, pt_layer[0][1]) |
|
|
|
|
|
pt_mlp = pt_layer[1][1] |
|
_copy_linear(hf_layer.fc1, pt_mlp.net[0][0]) |
|
_copy_linear(hf_layer.fc2, pt_mlp.net[2]) |
|
|
|
def _copy_layers(hf_layers, pt_layers): |
|
for i, hf_layer in enumerate(hf_layers): |
|
if i != 0: |
|
i += i |
|
pt_layer = pt_layers[i : i + 2] |
|
_copy_layer(hf_layer, pt_layer) |
|
|
|
hf_model = LDMBertModel(config).eval() |
|
|
|
|
|
hf_model.model.embed_tokens.weight = checkpoint.transformer.token_emb.weight |
|
hf_model.model.embed_positions.weight.data = checkpoint.transformer.pos_emb.emb.weight |
|
|
|
|
|
_copy_linear(hf_model.model.layer_norm, checkpoint.transformer.norm) |
|
|
|
|
|
_copy_layers(hf_model.model.layers, checkpoint.transformer.attn_layers.layers) |
|
|
|
_copy_linear(hf_model.to_logits, checkpoint.transformer.to_logits) |
|
|
|
return hf_model |
|
|
|
|
|
def convert_ldm_clip_checkpoint(checkpoint): |
|
text_model = CLIPTextModel.from_pretrained("openai/clip-vit-large-patch14") |
|
|
|
keys = list(checkpoint.keys()) |
|
|
|
text_model_dict = {} |
|
|
|
for key in keys: |
|
if key.startswith("cond_stage_model.transformer"): |
|
text_model_dict[key[len("cond_stage_model.transformer.") :]] = checkpoint[key] |
|
|
|
text_model.load_state_dict(text_model_dict) |
|
|
|
return text_model |
|
|
|
|
|
textenc_conversion_lst = [ |
|
("cond_stage_model.model.positional_embedding", "text_model.embeddings.position_embedding.weight"), |
|
("cond_stage_model.model.token_embedding.weight", "text_model.embeddings.token_embedding.weight"), |
|
("cond_stage_model.model.ln_final.weight", "text_model.final_layer_norm.weight"), |
|
("cond_stage_model.model.ln_final.bias", "text_model.final_layer_norm.bias"), |
|
] |
|
textenc_conversion_map = {x[0]: x[1] for x in textenc_conversion_lst} |
|
|
|
textenc_transformer_conversion_lst = [ |
|
|
|
("resblocks.", "text_model.encoder.layers."), |
|
("ln_1", "layer_norm1"), |
|
("ln_2", "layer_norm2"), |
|
(".c_fc.", ".fc1."), |
|
(".c_proj.", ".fc2."), |
|
(".attn", ".self_attn"), |
|
("ln_final.", "transformer.text_model.final_layer_norm."), |
|
("token_embedding.weight", "transformer.text_model.embeddings.token_embedding.weight"), |
|
("positional_embedding", "transformer.text_model.embeddings.position_embedding.weight"), |
|
] |
|
protected = {re.escape(x[0]): x[1] for x in textenc_transformer_conversion_lst} |
|
textenc_pattern = re.compile("|".join(protected.keys())) |
|
|
|
|
|
def convert_paint_by_example_checkpoint(checkpoint): |
|
config = CLIPVisionConfig.from_pretrained("openai/clip-vit-large-patch14") |
|
model = PaintByExampleImageEncoder(config) |
|
|
|
keys = list(checkpoint.keys()) |
|
|
|
text_model_dict = {} |
|
|
|
for key in keys: |
|
if key.startswith("cond_stage_model.transformer"): |
|
text_model_dict[key[len("cond_stage_model.transformer.") :]] = checkpoint[key] |
|
|
|
|
|
model.model.load_state_dict(text_model_dict) |
|
|
|
|
|
keys_mapper = { |
|
k[len("cond_stage_model.mapper.res") :]: v |
|
for k, v in checkpoint.items() |
|
if k.startswith("cond_stage_model.mapper") |
|
} |
|
|
|
MAPPING = { |
|
"attn.c_qkv": ["attn1.to_q", "attn1.to_k", "attn1.to_v"], |
|
"attn.c_proj": ["attn1.to_out.0"], |
|
"ln_1": ["norm1"], |
|
"ln_2": ["norm3"], |
|
"mlp.c_fc": ["ff.net.0.proj"], |
|
"mlp.c_proj": ["ff.net.2"], |
|
} |
|
|
|
mapped_weights = {} |
|
for key, value in keys_mapper.items(): |
|
prefix = key[: len("blocks.i")] |
|
suffix = key.split(prefix)[-1].split(".")[-1] |
|
name = key.split(prefix)[-1].split(suffix)[0][1:-1] |
|
mapped_names = MAPPING[name] |
|
|
|
num_splits = len(mapped_names) |
|
for i, mapped_name in enumerate(mapped_names): |
|
new_name = ".".join([prefix, mapped_name, suffix]) |
|
shape = value.shape[0] // num_splits |
|
mapped_weights[new_name] = value[i * shape : (i + 1) * shape] |
|
|
|
model.mapper.load_state_dict(mapped_weights) |
|
|
|
|
|
model.final_layer_norm.load_state_dict( |
|
{ |
|
"bias": checkpoint["cond_stage_model.final_ln.bias"], |
|
"weight": checkpoint["cond_stage_model.final_ln.weight"], |
|
} |
|
) |
|
|
|
|
|
model.proj_out.load_state_dict( |
|
{ |
|
"bias": checkpoint["proj_out.bias"], |
|
"weight": checkpoint["proj_out.weight"], |
|
} |
|
) |
|
|
|
|
|
model.uncond_vector.data = torch.nn.Parameter(checkpoint["learnable_vector"]) |
|
return model |
|
|
|
|
|
def convert_open_clip_checkpoint(checkpoint): |
|
text_model = CLIPTextModel.from_pretrained("stabilityai/stable-diffusion-2", subfolder="text_encoder") |
|
|
|
keys = list(checkpoint.keys()) |
|
|
|
text_model_dict = {} |
|
|
|
d_model = int(checkpoint["cond_stage_model.model.text_projection"].shape[0]) |
|
|
|
text_model_dict["text_model.embeddings.position_ids"] = text_model.text_model.embeddings.get_buffer("position_ids") |
|
|
|
for key in keys: |
|
if "resblocks.23" in key: |
|
continue |
|
if key in textenc_conversion_map: |
|
text_model_dict[textenc_conversion_map[key]] = checkpoint[key] |
|
if key.startswith("cond_stage_model.model.transformer."): |
|
new_key = key[len("cond_stage_model.model.transformer.") :] |
|
if new_key.endswith(".in_proj_weight"): |
|
new_key = new_key[: -len(".in_proj_weight")] |
|
new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key) |
|
text_model_dict[new_key + ".q_proj.weight"] = checkpoint[key][:d_model, :] |
|
text_model_dict[new_key + ".k_proj.weight"] = checkpoint[key][d_model : d_model * 2, :] |
|
text_model_dict[new_key + ".v_proj.weight"] = checkpoint[key][d_model * 2 :, :] |
|
elif new_key.endswith(".in_proj_bias"): |
|
new_key = new_key[: -len(".in_proj_bias")] |
|
new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key) |
|
text_model_dict[new_key + ".q_proj.bias"] = checkpoint[key][:d_model] |
|
text_model_dict[new_key + ".k_proj.bias"] = checkpoint[key][d_model : d_model * 2] |
|
text_model_dict[new_key + ".v_proj.bias"] = checkpoint[key][d_model * 2 :] |
|
else: |
|
new_key = textenc_pattern.sub(lambda m: protected[re.escape(m.group(0))], new_key) |
|
|
|
text_model_dict[new_key] = checkpoint[key] |
|
|
|
text_model.load_state_dict(text_model_dict) |
|
|
|
return text_model |
|
|
|
|
|
if __name__ == "__main__": |
|
parser = argparse.ArgumentParser() |
|
|
|
parser.add_argument( |
|
"--checkpoint_path", default=None, type=str, required=True, help="Path to the checkpoint to convert." |
|
) |
|
|
|
parser.add_argument( |
|
"--original_config_file", |
|
default=None, |
|
type=str, |
|
help="The YAML config file corresponding to the original architecture.", |
|
) |
|
parser.add_argument( |
|
"--num_in_channels", |
|
default=None, |
|
type=int, |
|
help="The number of input channels. If `None` number of input channels will be automatically inferred.", |
|
) |
|
parser.add_argument( |
|
"--scheduler_type", |
|
default="pndm", |
|
type=str, |
|
help="Type of scheduler to use. Should be one of ['pndm', 'lms', 'ddim', 'euler', 'euler-ancestral', 'dpm']", |
|
) |
|
parser.add_argument( |
|
"--pipeline_type", |
|
default=None, |
|
type=str, |
|
help="The pipeline type. If `None` pipeline will be automatically inferred.", |
|
) |
|
parser.add_argument( |
|
"--image_size", |
|
default=None, |
|
type=int, |
|
help=( |
|
"The image size that the model was trained on. Use 512 for Stable Diffusion v1.X and Stable Siffusion v2" |
|
" Base. Use 768 for Stable Diffusion v2." |
|
), |
|
) |
|
parser.add_argument( |
|
"--prediction_type", |
|
default=None, |
|
type=str, |
|
help=( |
|
"The prediction type that the model was trained on. Use 'epsilon' for Stable Diffusion v1.X and Stable" |
|
" Siffusion v2 Base. Use 'v-prediction' for Stable Diffusion v2." |
|
), |
|
) |
|
parser.add_argument( |
|
"--extract_ema", |
|
action="store_true", |
|
help=( |
|
"Only relevant for checkpoints that have both EMA and non-EMA weights. Whether to extract the EMA weights" |
|
" or not. Defaults to `False`. Add `--extract_ema` to extract the EMA weights. EMA weights usually yield" |
|
" higher quality images for inference. Non-EMA weights are usually better to continue fine-tuning." |
|
), |
|
) |
|
parser.add_argument( |
|
"--upcast_attn", |
|
default=False, |
|
type=bool, |
|
help=( |
|
"Whether the attention computation should always be upcasted. This is necessary when running stable" |
|
" diffusion 2.1." |
|
), |
|
) |
|
parser.add_argument("--dump_path", default=None, type=str, required=True, help="Path to the output model.") |
|
parser.add_argument("--device", type=str, help="Device to use (e.g. cpu, cuda:0, cuda:1, etc.)") |
|
args = parser.parse_args() |
|
|
|
image_size = args.image_size |
|
prediction_type = args.prediction_type |
|
|
|
if args.device is None: |
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
checkpoint = torch.load(args.checkpoint_path, map_location=device) |
|
else: |
|
checkpoint = torch.load(args.checkpoint_path, map_location=args.device) |
|
|
|
|
|
if "global_step" in checkpoint: |
|
global_step = checkpoint["global_step"] |
|
else: |
|
print("global_step key not found in model") |
|
global_step = None |
|
|
|
if "state_dict" in checkpoint: |
|
checkpoint = checkpoint["state_dict"] |
|
|
|
upcast_attention = False |
|
if args.original_config_file is None: |
|
key_name = "model.diffusion_model.input_blocks.2.1.transformer_blocks.0.attn2.to_k.weight" |
|
|
|
if key_name in checkpoint and checkpoint[key_name].shape[-1] == 1024: |
|
if not os.path.isfile("v2-inference-v.yaml"): |
|
|
|
os.system( |
|
"wget https://raw.githubusercontent.com/Stability-AI/stablediffusion/main/configs/stable-diffusion/v2-inference-v.yaml" |
|
" -O v2-inference-v.yaml" |
|
) |
|
args.original_config_file = "./v2-inference-v.yaml" |
|
|
|
if global_step == 110000: |
|
|
|
upcast_attention = True |
|
else: |
|
if not os.path.isfile("v1-inference.yaml"): |
|
|
|
os.system( |
|
"wget https://raw.githubusercontent.com/CompVis/stable-diffusion/main/configs/stable-diffusion/v1-inference.yaml" |
|
" -O v1-inference.yaml" |
|
) |
|
args.original_config_file = "./v1-inference.yaml" |
|
|
|
original_config = OmegaConf.load(args.original_config_file) |
|
|
|
if args.num_in_channels is not None: |
|
original_config["model"]["params"]["unet_config"]["params"]["in_channels"] = args.num_in_channels |
|
|
|
if ( |
|
"parameterization" in original_config["model"]["params"] |
|
and original_config["model"]["params"]["parameterization"] == "v" |
|
): |
|
if prediction_type is None: |
|
|
|
|
|
prediction_type = "epsilon" if global_step == 875000 else "v_prediction" |
|
if image_size is None: |
|
|
|
|
|
image_size = 512 if global_step == 875000 else 768 |
|
else: |
|
if prediction_type is None: |
|
prediction_type = "epsilon" |
|
if image_size is None: |
|
image_size = 512 |
|
|
|
num_train_timesteps = original_config.model.params.timesteps |
|
beta_start = original_config.model.params.linear_start |
|
beta_end = original_config.model.params.linear_end |
|
|
|
scheduler = DDIMScheduler( |
|
beta_end=beta_end, |
|
beta_schedule="scaled_linear", |
|
beta_start=beta_start, |
|
num_train_timesteps=num_train_timesteps, |
|
steps_offset=1, |
|
clip_sample=False, |
|
set_alpha_to_one=False, |
|
prediction_type=prediction_type, |
|
) |
|
|
|
scheduler.register_to_config(clip_sample=False) |
|
|
|
if args.scheduler_type == "pndm": |
|
config = dict(scheduler.config) |
|
config["skip_prk_steps"] = True |
|
scheduler = PNDMScheduler.from_config(config) |
|
elif args.scheduler_type == "lms": |
|
scheduler = LMSDiscreteScheduler.from_config(scheduler.config) |
|
elif args.scheduler_type == "heun": |
|
scheduler = HeunDiscreteScheduler.from_config(scheduler.config) |
|
elif args.scheduler_type == "euler": |
|
scheduler = EulerDiscreteScheduler.from_config(scheduler.config) |
|
elif args.scheduler_type == "euler-ancestral": |
|
scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler.config) |
|
elif args.scheduler_type == "dpm": |
|
scheduler = DPMSolverMultistepScheduler.from_config(scheduler.config) |
|
elif args.scheduler_type == "ddim": |
|
scheduler = scheduler |
|
else: |
|
raise ValueError(f"Scheduler of type {args.scheduler_type} doesn't exist!") |
|
|
|
|
|
unet_config = create_unet_diffusers_config(original_config, image_size=image_size) |
|
unet_config["upcast_attention"] = upcast_attention |
|
unet = UNet2DConditionModel(**unet_config) |
|
|
|
converted_unet_checkpoint = convert_ldm_unet_checkpoint( |
|
checkpoint, unet_config, path=args.checkpoint_path, extract_ema=args.extract_ema |
|
) |
|
|
|
unet.load_state_dict(converted_unet_checkpoint) |
|
|
|
|
|
vae_config = create_vae_diffusers_config(original_config, image_size=image_size) |
|
converted_vae_checkpoint = convert_ldm_vae_checkpoint(checkpoint, vae_config) |
|
|
|
vae = AutoencoderKL(**vae_config) |
|
vae.load_state_dict(converted_vae_checkpoint) |
|
|
|
|
|
model_type = args.pipeline_type |
|
if model_type is None: |
|
model_type = original_config.model.params.cond_stage_config.target.split(".")[-1] |
|
|
|
if model_type == "FrozenOpenCLIPEmbedder": |
|
text_model = convert_open_clip_checkpoint(checkpoint) |
|
tokenizer = CLIPTokenizer.from_pretrained("stabilityai/stable-diffusion-2", subfolder="tokenizer") |
|
pipe = StableDiffusionPipeline( |
|
vae=vae, |
|
text_encoder=text_model, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=scheduler, |
|
safety_checker=None, |
|
feature_extractor=None, |
|
requires_safety_checker=False, |
|
) |
|
elif model_type == "PaintByExample": |
|
vision_model = convert_paint_by_example_checkpoint(checkpoint) |
|
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") |
|
feature_extractor = AutoFeatureExtractor.from_pretrained("CompVis/stable-diffusion-safety-checker") |
|
pipe = PaintByExamplePipeline( |
|
vae=vae, |
|
image_encoder=vision_model, |
|
unet=unet, |
|
scheduler=scheduler, |
|
safety_checker=None, |
|
feature_extractor=feature_extractor, |
|
) |
|
elif model_type == "FrozenCLIPEmbedder": |
|
text_model = convert_ldm_clip_checkpoint(checkpoint) |
|
tokenizer = CLIPTokenizer.from_pretrained("openai/clip-vit-large-patch14") |
|
safety_checker = StableDiffusionSafetyChecker.from_pretrained("CompVis/stable-diffusion-safety-checker") |
|
feature_extractor = AutoFeatureExtractor.from_pretrained("CompVis/stable-diffusion-safety-checker") |
|
pipe = StableDiffusionPipeline( |
|
vae=vae, |
|
text_encoder=text_model, |
|
tokenizer=tokenizer, |
|
unet=unet, |
|
scheduler=scheduler, |
|
safety_checker=safety_checker, |
|
feature_extractor=feature_extractor, |
|
) |
|
else: |
|
text_config = create_ldm_bert_config(original_config) |
|
text_model = convert_ldm_bert_checkpoint(checkpoint, text_config) |
|
tokenizer = BertTokenizerFast.from_pretrained("bert-base-uncased") |
|
pipe = LDMTextToImagePipeline(vqvae=vae, bert=text_model, tokenizer=tokenizer, unet=unet, scheduler=scheduler) |
|
|
|
pipe.save_pretrained(args.dump_path) |
|
|