SentenceTransformer based on sentence-transformers/all-mpnet-base-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-mpnet-base-v2 on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-mpnet-base-v2
- Maximum Sequence Length: 384 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- csv
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("yyzheng00/all-mpnet-base-v2_snomed_expression")
# Run inference
sentences = [
'|Neoplasm of anterior wall of nasopharynx (disorder)| + |Neoplasm of uncertain behavior of nasopharynx (disorder)| : { |Finding site (attribute)| = |Structure of anterior wall of nasopharynx (body structure)|, |Associated morphology (attribute)| = |Neoplasm of uncertain behavior (morphologic abnormality)| }',
'Neoplasm of uncertain behavior of lateral wall of nasopharynx (disorder)',
'Secondary angle-closure glaucoma - synechial (disorder)',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
sts-dev
- Evaluated with
EmbeddingSimilarityEvaluator
Metric | Value |
---|---|
pearson_cosine | 0.9049 |
spearman_cosine | 0.8556 |
Training Details
Training Dataset
csv
- Dataset: csv
- Size: 360,886 training samples
- Columns:
text_a
,text_b
, andlabel
- Approximate statistics based on the first 1000 samples:
text_a text_b label type string string int details - min: 28 tokens
- mean: 101.13 tokens
- max: 357 tokens
- min: 7 tokens
- mean: 15.29 tokens
- max: 60 tokens
- 0: ~51.40%
- 1: ~48.60%
- Samples:
text_a text_b label Risk assessment (procedure) : { Chronic inflammatory disorder (disorder) + Imaging of head (procedure) + - Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Evaluation Dataset
csv
- Dataset: csv
- Size: 360,886 evaluation samples
- Columns:
text_a
,text_b
, andlabel
- Approximate statistics based on the first 1000 samples:
text_a text_b label type string string int details - min: 25 tokens
- mean: 101.18 tokens
- max: 366 tokens
- min: 7 tokens
- mean: 15.21 tokens
- max: 52 tokens
- 0: ~51.30%
- 1: ~48.70%
- Samples:
text_a text_b label Disorder of fetal abdominal region (disorder) + Computed tomography of pelvis for brachytherapy planning (procedure) + Product containing only hydroxyzine in oral dose form (medicinal product form) : - Loss:
CoSENTLoss
with these parameters:{ "scale": 20.0, "similarity_fct": "pairwise_cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 16per_device_eval_batch_size
: 16num_train_epochs
: 1warmup_ratio
: 0.1fp16
: Truebatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 16per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 5e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 1max_steps
: -1lr_scheduler_type
: linearlr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Falsefp16
: Truefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Nonehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | Validation Loss | sts-dev_spearman_cosine |
---|---|---|---|---|
0.0055 | 100 | 5.2922 | 3.9427 | 0.6159 |
0.0111 | 200 | 3.2766 | 2.8638 | 0.7437 |
0.0166 | 300 | 2.8445 | 2.4816 | 0.7833 |
0.0222 | 400 | 2.5209 | 2.2995 | 0.7974 |
0.0277 | 500 | 2.5298 | 2.1033 | 0.8072 |
0.0333 | 600 | 2.0427 | 2.1055 | 0.8114 |
0.0388 | 700 | 2.1367 | 2.0634 | 0.8121 |
0.0443 | 800 | 2.2486 | 1.7848 | 0.8210 |
0.0499 | 900 | 1.921 | 1.9666 | 0.8190 |
0.0554 | 1000 | 1.9962 | 1.9688 | 0.8180 |
0.0610 | 1100 | 1.5203 | 2.0695 | 0.8187 |
0.0665 | 1200 | 2.0616 | 1.7060 | 0.8223 |
0.0720 | 1300 | 2.0793 | 1.8158 | 0.8254 |
0.0776 | 1400 | 2.0766 | 1.8549 | 0.8213 |
0.0831 | 1500 | 1.5608 | 1.8045 | 0.8241 |
0.0887 | 1600 | 1.7671 | 1.9724 | 0.8196 |
0.0942 | 1700 | 2.1665 | 2.2623 | 0.8033 |
0.0998 | 1800 | 1.9596 | 1.8070 | 0.8224 |
0.1053 | 1900 | 1.5704 | 1.8142 | 0.8265 |
0.1108 | 2000 | 2.0749 | 2.0596 | 0.8205 |
0.1164 | 2100 | 1.9445 | 1.7458 | 0.8279 |
0.1219 | 2200 | 1.6043 | 2.0309 | 0.8242 |
0.1275 | 2300 | 1.5723 | 1.7440 | 0.8286 |
0.1330 | 2400 | 1.7905 | 1.5584 | 0.8319 |
0.1385 | 2500 | 2.0777 | 1.7437 | 0.8254 |
0.1441 | 2600 | 1.7563 | 1.6852 | 0.8322 |
0.1496 | 2700 | 1.6565 | 1.8196 | 0.8268 |
0.1552 | 2800 | 1.5064 | 1.6763 | 0.8302 |
0.1607 | 2900 | 1.9221 | 1.7317 | 0.8279 |
0.1663 | 3000 | 1.7803 | 1.8330 | 0.8225 |
0.1718 | 3100 | 1.3559 | 1.9419 | 0.8278 |
0.1773 | 3200 | 1.5309 | 1.5263 | 0.8345 |
0.1829 | 3300 | 1.6429 | 1.7952 | 0.8290 |
0.1884 | 3400 | 1.4676 | 1.8284 | 0.8270 |
0.1940 | 3500 | 1.5167 | 1.6084 | 0.8295 |
0.1995 | 3600 | 1.7605 | 1.6362 | 0.8334 |
0.2050 | 3700 | 1.6812 | 1.4205 | 0.8348 |
0.2106 | 3800 | 1.4537 | 1.6432 | 0.8341 |
0.2161 | 3900 | 1.6718 | 1.2594 | 0.8382 |
0.2217 | 4000 | 1.3892 | 1.4798 | 0.8351 |
0.2272 | 4100 | 1.7261 | 1.3948 | 0.8354 |
0.2328 | 4200 | 1.6611 | 1.4519 | 0.8368 |
0.2383 | 4300 | 1.3181 | 1.2844 | 0.8389 |
0.2438 | 4400 | 1.4356 | 1.3015 | 0.8392 |
0.2494 | 4500 | 1.4077 | 1.3217 | 0.8381 |
0.2549 | 4600 | 1.2534 | 1.5767 | 0.8340 |
0.2605 | 4700 | 1.6881 | 1.2737 | 0.8398 |
0.2660 | 4800 | 1.4572 | 1.2570 | 0.8408 |
0.2715 | 4900 | 1.2339 | 1.1919 | 0.8423 |
0.2771 | 5000 | 1.2871 | 1.3166 | 0.8398 |
0.2826 | 5100 | 1.3532 | 1.4045 | 0.8360 |
0.2882 | 5200 | 1.2731 | 1.4843 | 0.8384 |
0.2937 | 5300 | 1.3776 | 1.1347 | 0.8423 |
0.2993 | 5400 | 1.2179 | 1.5040 | 0.8373 |
0.3048 | 5500 | 1.41 | 1.2401 | 0.8418 |
0.3103 | 5600 | 1.3901 | 1.1494 | 0.8416 |
0.3159 | 5700 | 1.4007 | 1.2487 | 0.8414 |
0.3214 | 5800 | 1.3444 | 1.4062 | 0.8397 |
0.3270 | 5900 | 1.3671 | 1.3194 | 0.8410 |
0.3325 | 6000 | 1.2401 | 1.2642 | 0.8411 |
0.3380 | 6100 | 1.4102 | 1.3317 | 0.8392 |
0.3436 | 6200 | 1.1672 | 1.0846 | 0.8438 |
0.3491 | 6300 | 1.3595 | 1.2747 | 0.8387 |
0.3547 | 6400 | 1.0956 | 1.4071 | 0.8392 |
0.3602 | 6500 | 1.539 | 1.2683 | 0.8413 |
0.3658 | 6600 | 1.3078 | 1.2173 | 0.8430 |
0.3713 | 6700 | 1.3562 | 1.0733 | 0.8447 |
0.3768 | 6800 | 1.3009 | 1.3561 | 0.8408 |
0.3824 | 6900 | 1.4319 | 1.1958 | 0.8432 |
0.3879 | 7000 | 1.0702 | 1.1325 | 0.8437 |
0.3935 | 7100 | 1.2339 | 0.9852 | 0.8465 |
0.3990 | 7200 | 0.8772 | 1.2658 | 0.8419 |
0.4045 | 7300 | 1.3411 | 1.1585 | 0.8438 |
0.4101 | 7400 | 1.1518 | 1.1572 | 0.8439 |
0.4156 | 7500 | 1.0287 | 0.9960 | 0.8456 |
0.4212 | 7600 | 1.2913 | 1.1595 | 0.8437 |
0.4267 | 7700 | 1.1006 | 1.1575 | 0.8437 |
0.4323 | 7800 | 1.3463 | 1.0478 | 0.8459 |
0.4378 | 7900 | 1.0428 | 1.0495 | 0.8461 |
0.4433 | 8000 | 1.0657 | 1.0442 | 0.8465 |
0.4489 | 8100 | 1.1002 | 1.0223 | 0.8475 |
0.4544 | 8200 | 1.1596 | 1.0066 | 0.8474 |
0.4600 | 8300 | 1.3218 | 1.0403 | 0.8460 |
0.4655 | 8400 | 1.1482 | 1.1177 | 0.8457 |
0.4710 | 8500 | 1.0033 | 1.1743 | 0.8448 |
0.4766 | 8600 | 1.0772 | 1.1071 | 0.8464 |
0.4821 | 8700 | 0.775 | 1.2731 | 0.8438 |
0.4877 | 8800 | 0.8859 | 0.9293 | 0.8491 |
0.4932 | 8900 | 0.7837 | 1.0760 | 0.8462 |
0.4988 | 9000 | 0.7768 | 1.0135 | 0.8470 |
0.5043 | 9100 | 1.0103 | 0.9691 | 0.8477 |
0.5098 | 9200 | 1.0219 | 1.2059 | 0.8441 |
0.5154 | 9300 | 0.9093 | 1.0895 | 0.8461 |
0.5209 | 9400 | 1.0176 | 0.9229 | 0.8489 |
0.5265 | 9500 | 1.3811 | 0.9470 | 0.8483 |
0.5320 | 9600 | 0.8338 | 1.0048 | 0.8477 |
0.5375 | 9700 | 0.7105 | 1.0591 | 0.8464 |
0.5431 | 9800 | 1.0313 | 0.9789 | 0.8482 |
0.5486 | 9900 | 1.0308 | 0.8741 | 0.8499 |
0.5542 | 10000 | 0.7353 | 0.9419 | 0.8482 |
0.5597 | 10100 | 0.7683 | 1.0695 | 0.8473 |
0.5653 | 10200 | 1.1728 | 0.9705 | 0.8494 |
0.5708 | 10300 | 0.8578 | 0.9633 | 0.8493 |
0.5763 | 10400 | 1.0095 | 0.7799 | 0.8514 |
0.5819 | 10500 | 1.0157 | 1.0333 | 0.8485 |
0.5874 | 10600 | 0.8164 | 0.8596 | 0.8509 |
0.5930 | 10700 | 0.9278 | 0.8256 | 0.8516 |
0.5985 | 10800 | 0.5919 | 1.0104 | 0.8493 |
0.6040 | 10900 | 0.6931 | 0.9957 | 0.8492 |
0.6096 | 11000 | 1.1545 | 0.9758 | 0.8494 |
0.6151 | 11100 | 1.1061 | 1.0360 | 0.8493 |
0.6207 | 11200 | 0.7954 | 0.9362 | 0.8509 |
0.6262 | 11300 | 0.6365 | 0.9504 | 0.8511 |
0.6318 | 11400 | 0.992 | 0.8553 | 0.8521 |
0.6373 | 11500 | 0.6971 | 0.8763 | 0.8520 |
0.6428 | 11600 | 0.8162 | 0.9527 | 0.8504 |
0.6484 | 11700 | 0.8973 | 0.8722 | 0.8519 |
0.6539 | 11800 | 0.7652 | 0.9417 | 0.8510 |
0.6595 | 11900 | 0.7305 | 0.8955 | 0.8519 |
0.6650 | 12000 | 0.8555 | 0.9007 | 0.8510 |
0.6705 | 12100 | 0.7165 | 0.7924 | 0.8530 |
0.6761 | 12200 | 0.7939 | 0.8607 | 0.8516 |
0.6816 | 12300 | 0.9873 | 0.7780 | 0.8533 |
0.6872 | 12400 | 0.7197 | 0.9380 | 0.8508 |
0.6927 | 12500 | 1.076 | 0.8041 | 0.8531 |
0.6983 | 12600 | 0.6853 | 0.8800 | 0.8517 |
0.7038 | 12700 | 0.9403 | 0.8181 | 0.8527 |
0.7093 | 12800 | 0.8598 | 0.7641 | 0.8536 |
0.7149 | 12900 | 0.628 | 0.7479 | 0.8540 |
0.7204 | 13000 | 1.0517 | 0.7611 | 0.8536 |
0.7260 | 13100 | 0.5099 | 0.8426 | 0.8521 |
0.7315 | 13200 | 0.751 | 0.8133 | 0.8526 |
0.7370 | 13300 | 0.572 | 0.8344 | 0.8524 |
0.7426 | 13400 | 0.8213 | 0.7869 | 0.8528 |
0.7481 | 13500 | 0.6046 | 0.7810 | 0.8528 |
0.7537 | 13600 | 0.7211 | 0.7502 | 0.8537 |
0.7592 | 13700 | 0.7443 | 0.7398 | 0.8538 |
0.7648 | 13800 | 0.6644 | 0.8257 | 0.8529 |
0.7703 | 13900 | 0.8948 | 0.7271 | 0.8536 |
0.7758 | 14000 | 0.6886 | 0.7607 | 0.8531 |
0.7814 | 14100 | 0.8322 | 0.7143 | 0.8540 |
0.7869 | 14200 | 0.6965 | 0.7270 | 0.8540 |
0.7925 | 14300 | 0.6478 | 0.7368 | 0.8541 |
0.7980 | 14400 | 0.6877 | 0.7690 | 0.8532 |
0.8035 | 14500 | 0.6289 | 0.7316 | 0.8538 |
0.8091 | 14600 | 0.9058 | 0.6514 | 0.8548 |
0.8146 | 14700 | 0.5971 | 0.6980 | 0.8542 |
0.8202 | 14800 | 0.5774 | 0.7124 | 0.8539 |
0.8257 | 14900 | 0.6134 | 0.7480 | 0.8534 |
0.8313 | 15000 | 0.6962 | 0.6284 | 0.8551 |
0.8368 | 15100 | 0.5934 | 0.7099 | 0.8540 |
0.8423 | 15200 | 0.7791 | 0.6925 | 0.8542 |
0.8479 | 15300 | 0.5418 | 0.6774 | 0.8544 |
0.8534 | 15400 | 0.7526 | 0.6380 | 0.8552 |
0.8590 | 15500 | 0.694 | 0.6967 | 0.8543 |
0.8645 | 15600 | 0.5813 | 0.6864 | 0.8543 |
0.8700 | 15700 | 0.726 | 0.6325 | 0.8552 |
0.8756 | 15800 | 0.5094 | 0.6491 | 0.8549 |
0.8811 | 15900 | 0.5728 | 0.6549 | 0.8549 |
0.8867 | 16000 | 0.5272 | 0.6723 | 0.8548 |
0.8922 | 16100 | 0.6896 | 0.6786 | 0.8546 |
0.8978 | 16200 | 0.5666 | 0.6629 | 0.8550 |
0.9033 | 16300 | 0.7312 | 0.6801 | 0.8549 |
0.9088 | 16400 | 0.6451 | 0.6779 | 0.8549 |
0.9144 | 16500 | 0.6572 | 0.6374 | 0.8556 |
0.9199 | 16600 | 0.5052 | 0.6672 | 0.8551 |
0.9255 | 16700 | 0.5395 | 0.6686 | 0.8550 |
0.9310 | 16800 | 0.4715 | 0.6840 | 0.8547 |
0.9365 | 16900 | 0.7149 | 0.6576 | 0.8552 |
0.9421 | 17000 | 0.5066 | 0.6533 | 0.8553 |
0.9476 | 17100 | 0.6382 | 0.6509 | 0.8552 |
0.9532 | 17200 | 0.5585 | 0.6729 | 0.8550 |
0.9587 | 17300 | 0.5953 | 0.6505 | 0.8554 |
0.9643 | 17400 | 0.3545 | 0.6487 | 0.8555 |
0.9698 | 17500 | 0.8031 | 0.6451 | 0.8555 |
0.9753 | 17600 | 0.8531 | 0.6366 | 0.8557 |
0.9809 | 17700 | 0.7154 | 0.6365 | 0.8557 |
0.9864 | 17800 | 0.3339 | 0.6339 | 0.8557 |
0.9920 | 17900 | 0.5858 | 0.6410 | 0.8556 |
0.9975 | 18000 | 0.7509 | 0.6400 | 0.8556 |
Framework Versions
- Python: 3.11.1
- Sentence Transformers: 3.3.1
- Transformers: 4.47.0
- PyTorch: 2.1.1+cu121
- Accelerate: 1.2.0
- Datasets: 2.18.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
CoSENTLoss
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
- Downloads last month
- 5
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for yyzheng00/all-mpnet-base-v2_snomed_expression
Base model
sentence-transformers/all-mpnet-base-v2Evaluation results
- Pearson Cosine on sts devself-reported0.905
- Spearman Cosine on sts devself-reported0.856