File size: 2,318 Bytes
2b2de6e
a6c3abb
 
 
 
 
 
2b2de6e
a6c3abb
2f316e7
a6c3abb
 
 
2f316e7
 
 
 
 
 
 
 
 
 
a6c3abb
 
 
 
 
 
 
 
 
 
 
 
 
2f316e7
a6c3abb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: multilingual_sentiment_newspaper_headlines
  results: []
---



# multilingual_sentiment_newspaper_headlines

This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on a dataset of 30k newspaper headlines in German, Polish, English, Dutch and Spanish. The dataset contains 6k headlines in each of the five languages. The newspapers used are as follows: 

['fakt', 'Rzeczpospolita', 'gazeta_wyborcza', 'UK_times',
       'guardian', 'UK_sun', 'NRC', 'de_telegraaf', 'volkskrant',
       'el_mundo', 'el_pais', 'ABC_spain', 'suddeutsche_zeitung',
       'De_Welt', 'Bild']




It achieves the following results on the evaluation set:
- Train Loss: 0.2886
- Train Sparse Categorical Accuracy: 0.8688
- Validation Loss: 1.0107
- Validation Sparse Categorical Accuracy: 0.6434
- Epoch: 4

## Model description

More information needed

## Intended uses & limitations

Newpaper headline classification 

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32

### Training results

| Train Loss | Train Sparse Categorical Accuracy | Validation Loss | Validation Sparse Categorical Accuracy | Epoch |
|:----------:|:---------------------------------:|:---------------:|:--------------------------------------:|:-----:|
| 0.8008     | 0.6130                            | 0.7099          | 0.6558                                 | 0     |
| 0.6148     | 0.6973                            | 0.7559          | 0.6200                                 | 1     |
| 0.4626     | 0.7690                            | 0.8233          | 0.6368                                 | 2     |
| 0.3632     | 0.8229                            | 0.9609          | 0.6454                                 | 3     |
| 0.2886     | 0.8688                            | 1.0107          | 0.6434                                 | 4     |


### Framework versions

- Transformers 4.26.0
- TensorFlow 2.9.2
- Tokenizers 0.13.2