File size: 2,738 Bytes
2b2de6e a6c3abb 2b2de6e a6c3abb 2f316e7 a6c3abb 2f316e7 ee84f25 de5d778 a6c3abb 10468f3 d0060d9 9544a49 2a2c067 10468f3 a93104b 2a2c067 10468f3 a6c3abb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 |
---
license: apache-2.0
tags:
- generated_from_keras_callback
model-index:
- name: multilingual_sentiment_newspaper_headlines
results: []
---
# multilingual_sentiment_newspaper_headlines
This model is a fine-tuned version of [bert-base-multilingual-cased](https://huggingface.co/bert-base-multilingual-cased) on a dataset of 30k newspaper headlines in German, Polish, English, Dutch and Spanish. The dataset contains 6k headlines in each of the five languages. The newspapers used are as follows:
+ Polish: *Fakt, Rzeczpospolita, Gazeta Wyborcza*
+ English: *The Times, The Guardian, The Sun*
+ Dutch: *De Telegraaf, NRC, Volkskrant*
+ Spanish: *El Mundo, El Pais, ABC*
+ German: *Suddeutsche Zeitung, De Welt, Bild*
It achieves the following results on the evaluation set:
- Train Loss: 0.2886
- Train Sparse Categorical Accuracy: 0.8688
- Validation Loss: 1.0107
- Validation Sparse Categorical Accuracy: 0.6434
- Epoch: 4
```python
import torch
from transformers import AutoTokenizer, TextClassificationPipeline,TFAutoModelForSequenceClassification
tokenizer = AutoTokenizer.from_pretrained("z-dickson/multilingual_sentiment_newspaper_headlines")
m1 = TFAutoModelForSequenceClassification.from_pretrained("z-dickson/multilingual_sentiment_newspaper_headlines", from_tf=True)
sentiment_classifier = TextClassificationPipeline(tokenizer=tokenizer, model=m1)
sentiment_classifier('Brazylia: Bolsonaro wci±ż nie uznał porażki. Jego zwolennicy blokuj± autostrady')
[{'label': 'negative, 0', 'score': 0.9989686012268066}]
```
### Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'learning_rate': 2e-05, 'decay': 0.0, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
### Training results
| Train Loss | Train Sparse Categorical Accuracy | Validation Loss | Validation Sparse Categorical Accuracy | Epoch |
|:----------:|:---------------------------------:|:---------------:|:--------------------------------------:|:-----:|
| 0.8008 | 0.6130 | 0.7099 | 0.6558 | 0 |
| 0.6148 | 0.6973 | 0.7559 | 0.6200 | 1 |
| 0.4626 | 0.7690 | 0.8233 | 0.6368 | 2 |
| 0.3632 | 0.8229 | 0.9609 | 0.6454 | 3 |
| 0.2886 | 0.8688 | 1.0107 | 0.6434 | 4 |
### Framework versions
- Transformers 4.26.0
- TensorFlow 2.9.2
- Tokenizers 0.13.2
|