File size: 7,869 Bytes
da3bbe8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 |
# Copyright (c) 2023-2024 DeepSeek.
#
# Permission is hereby granted, free of charge, to any person obtaining a copy of
# this software and associated documentation files (the "Software"), to deal in
# the Software without restriction, including without limitation the rights to
# use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
# the Software, and to permit persons to whom the Software is furnished to do so,
# subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
# FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
# COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
# IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
# CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
# -*- coding: utf-8 -*-
import argparse
import os
import sys
from threading import Thread
import torch
from PIL import Image
from transformers import TextIteratorStreamer
from deepseek_vl.utils.io import load_pretrained_model
def load_image(image_file):
image = Image.open(image_file).convert("RGB")
return image
def get_help_message(image_token):
help_msg = (
f"\t\t DeepSeek-VL-Chat is a chatbot that can answer questions based on the given image. Enjoy it! \n"
f"Usage: \n"
f" 1. type `exit` to quit. \n"
f" 2. type `{image_token}` to indicate there is an image. You can enter multiple images, "
f"e.g '{image_token} is a dot, {image_token} is a cat, and what is it in {image_token}?'. "
f"When you type `{image_token}`, the chatbot will ask you to input image file path. \n"
f" 4. type `help` to get the help messages. \n"
f" 5. type `new` to start a new conversation. \n"
f" Here is an example, you can type: '<image_placeholder>Describe the image.'\n"
)
return help_msg
@torch.inference_mode()
def response(
args, conv, pil_images, tokenizer, vl_chat_processor, vl_gpt, generation_config
):
prompt = conv.get_prompt()
prepare_inputs = vl_chat_processor.__call__(
prompt=prompt, images=pil_images, force_batchify=True
).to(vl_gpt.device)
# run image encoder to get the image embeddings
inputs_embeds = vl_gpt.prepare_inputs_embeds(**prepare_inputs)
streamer = TextIteratorStreamer(
tokenizer=tokenizer, skip_prompt=True, skip_special_tokens=True
)
generation_config["inputs_embeds"] = inputs_embeds
generation_config["attention_mask"] = prepare_inputs.attention_mask
generation_config["streamer"] = streamer
thread = Thread(target=vl_gpt.language_model.generate, kwargs=generation_config)
thread.start()
yield from streamer
def get_user_input(hint: str):
user_input = ""
while user_input == "":
try:
user_input = input(f"{hint}")
except KeyboardInterrupt:
print()
continue
except EOFError:
user_input = "exit"
return user_input
def chat(args, tokenizer, vl_chat_processor, vl_gpt, generation_config):
image_token = vl_chat_processor.image_token
help_msg = get_help_message(image_token)
while True:
print(help_msg)
pil_images = []
conv = vl_chat_processor.new_chat_template()
roles = conv.roles
while True:
# get user input
user_input = get_user_input(
f"{roles[0]} [{image_token} indicates an image]: "
)
if user_input == "exit":
print("Chat program exited.")
sys.exit(0)
elif user_input == "help":
print(help_msg)
elif user_input == "new":
os.system("clear")
pil_images = []
conv = vl_chat_processor.new_chat_template()
torch.cuda.empty_cache()
print("New conversation started.")
else:
conv.append_message(conv.roles[0], user_input)
conv.append_message(conv.roles[1], None)
# check if the user input is an image token
num_images = user_input.count(image_token)
cur_img_idx = 0
while cur_img_idx < num_images:
try:
image_file = input(
f"({cur_img_idx + 1}/{num_images}) Input the image file path: "
)
image_file = (
image_file.strip()
) # trim whitespaces around path, enables drop-in from for example Dolphin
except KeyboardInterrupt:
print()
continue
except EOFError:
image_file = None
if image_file and os.path.exists(image_file):
pil_image = load_image(image_file)
pil_images.append(pil_image)
cur_img_idx += 1
elif image_file == "exit":
print("Chat program exited.")
sys.exit(0)
else:
print(
f"File error, `{image_file}` does not exist. Please input the correct file path."
)
# get the answer by the model's prediction
answer = ""
answer_iter = response(
args,
conv,
pil_images,
tokenizer,
vl_chat_processor,
vl_gpt,
generation_config,
)
sys.stdout.write(f"{conv.roles[1]}: ")
for char in answer_iter:
answer += char
sys.stdout.write(char)
sys.stdout.flush()
sys.stdout.write("\n")
sys.stdout.flush()
conv.update_last_message(answer)
# conv.messages[-1][-1] = answer
def main(args):
# setup
tokenizer, vl_chat_processor, vl_gpt = load_pretrained_model(args.model_path)
generation_config = dict(
pad_token_id=vl_chat_processor.tokenizer.eos_token_id,
bos_token_id=vl_chat_processor.tokenizer.bos_token_id,
eos_token_id=vl_chat_processor.tokenizer.eos_token_id,
max_new_tokens=args.max_gen_len,
use_cache=True,
)
if args.temperature > 0:
generation_config.update(
{
"do_sample": True,
"top_p": args.top_p,
"temperature": args.temperature,
"repetition_penalty": args.repetition_penalty,
}
)
else:
generation_config.update({"do_sample": False})
chat(args, tokenizer, vl_chat_processor, vl_gpt, generation_config)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_path",
type=str,
default="deepseek-ai/deepseek-vl-7b-chat",
help="the huggingface model name or the local path of the downloaded huggingface model.",
)
parser.add_argument("--temperature", type=float, default=0.2)
parser.add_argument("--top_p", type=float, default=0.95)
parser.add_argument("--repetition_penalty", type=float, default=1.1)
parser.add_argument("--max_gen_len", type=int, default=512)
args = parser.parse_args()
main(args)
|