zbigi's picture
Update README.md
56aa493 verified
metadata
license: apache-2.0
library_name: peft
tags:
  - generated_from_trainer
base_model: facebook/bart-base
metrics:
  - rouge
model-index:
  - name: bart-base-lora-summarization-medical
    results: []
datasets:
  - mystic-leung/medical_cord19
language:
  - en
pipeline_tag: summarization

bart-base-lora-summarization-medical

This model is a fine-tuned version of facebook/bart-base on the 'mystic-leung/medical_cord19' dataset. It achieves the following results on the evaluation set:

  • Loss: 2.4119
  • Rouge1: 0.4304
  • Rouge2: 0.2352
  • Rougel: 0.3663
  • Rougelsum: 0.3660
  • Gen Len: 18.1767

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 4
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum Gen Len
2.5079 1.0 6250 2.121959 0.4263 0.2290 0.3597 0.3594 18.3300
2.4566 2.0 12500 2.084411 0.4267 0.2312 0.3622 0.3618 18.2773
2.4242 3.0 18750 2.061557 0.4311 0.2358 0.3660 0.3656 18.1307
2.4058 4.0 25000 2.053182 0.4316 0.2367 0.3660 0.3659 18.1753
2.4119 5.0 31250 2.052128 0.4304 0.2352 0.3663 0.3660 18.1767

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.1
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1