bart-base-summarization-medical-42
This model is a fine-tuned version of facebook/bart-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.1300
- Rouge1: 0.4187
- Rouge2: 0.2245
- Rougel: 0.3558
- Rougelsum: 0.3554
- Gen Len: 18.192
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 1
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
2.7168 | 1.0 | 1250 | 2.2000 | 0.4111 | 0.2187 | 0.3528 | 0.3522 | 17.687 |
2.6023 | 2.0 | 2500 | 2.1646 | 0.4129 | 0.2195 | 0.3505 | 0.3498 | 18.113 |
2.5709 | 3.0 | 3750 | 2.1507 | 0.417 | 0.224 | 0.3545 | 0.3538 | 18.03 |
2.5607 | 4.0 | 5000 | 2.1403 | 0.4157 | 0.2238 | 0.352 | 0.3514 | 18.21 |
2.5438 | 5.0 | 6250 | 2.1334 | 0.4167 | 0.224 | 0.3542 | 0.3539 | 18.133 |
2.5436 | 6.0 | 7500 | 2.1300 | 0.4187 | 0.2245 | 0.3558 | 0.3554 | 18.192 |
Framework versions
- PEFT 0.12.0
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 5
Model tree for zbigi/bart-base-summarization-medical-42
Base model
facebook/bart-base