bart-base-summarization-medical-43
This model is a fine-tuned version of facebook/bart-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 2.1317
- Rouge1: 0.4198
- Rouge2: 0.2252
- Rougel: 0.3557
- Rougelsum: 0.3554
- Gen Len: 18.34
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 1
- seed: 43
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
2.7087 | 1.0 | 1250 | 2.2005 | 0.4151 | 0.2224 | 0.3555 | 0.3553 | 18.135 |
2.615 | 2.0 | 2500 | 2.1680 | 0.4145 | 0.2228 | 0.3537 | 0.3534 | 17.898 |
2.571 | 3.0 | 3750 | 2.1526 | 0.417 | 0.2224 | 0.3525 | 0.3522 | 18.122 |
2.5533 | 4.0 | 5000 | 2.1433 | 0.4199 | 0.2239 | 0.3558 | 0.3555 | 18.241 |
2.5482 | 5.0 | 6250 | 2.1344 | 0.4222 | 0.226 | 0.3562 | 0.356 | 18.293 |
2.5365 | 6.0 | 7500 | 2.1317 | 0.4198 | 0.2252 | 0.3557 | 0.3554 | 18.34 |
Framework versions
- PEFT 0.12.0
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 3
Model tree for zbigi/bart-base-summarization-medical-43
Base model
facebook/bart-base