|
--- |
|
base_model: facebook/bart-base |
|
library_name: peft |
|
license: apache-2.0 |
|
metrics: |
|
- rouge |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: bart-base-summarization-medical-44 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# bart-base-summarization-medical-44 |
|
|
|
This model is a fine-tuned version of [facebook/bart-base](https://huggingface.co/facebook/bart-base) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 2.1287 |
|
- Rouge1: 0.4223 |
|
- Rouge2: 0.2251 |
|
- Rougel: 0.3572 |
|
- Rougelsum: 0.357 |
|
- Gen Len: 18.196 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 3e-05 |
|
- train_batch_size: 4 |
|
- eval_batch_size: 1 |
|
- seed: 44 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 6 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
| 2.7031 | 1.0 | 1250 | 2.1999 | 0.413 | 0.2201 | 0.3533 | 0.3528 | 17.704 | |
|
| 2.6144 | 2.0 | 2500 | 2.1644 | 0.4143 | 0.2198 | 0.3521 | 0.3518 | 17.965 | |
|
| 2.5745 | 3.0 | 3750 | 2.1561 | 0.4142 | 0.2169 | 0.3486 | 0.3483 | 18.171 | |
|
| 2.5622 | 4.0 | 5000 | 2.1389 | 0.419 | 0.2222 | 0.3523 | 0.3524 | 18.221 | |
|
| 2.5308 | 5.0 | 6250 | 2.1308 | 0.422 | 0.2255 | 0.3569 | 0.3569 | 18.183 | |
|
| 2.5394 | 6.0 | 7500 | 2.1287 | 0.4223 | 0.2251 | 0.3572 | 0.357 | 18.196 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.12.0 |
|
- Transformers 4.42.4 |
|
- Pytorch 2.3.1+cu121 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |