bart-base-summarization-medical_on_cnn-51
This model is a fine-tuned version of facebook/bart-base on the None dataset. It achieves the following results on the evaluation set:
- Loss: 3.3788
- Rouge1: 0.2533
- Rouge2: 0.0944
- Rougel: 0.2004
- Rougelsum: 0.2239
- Gen Len: 18.404
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 3e-05
- train_batch_size: 4
- eval_batch_size: 1
- seed: 51
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 6
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
2.7137 | 1.0 | 1250 | 3.3745 | 0.2514 | 0.0905 | 0.1971 | 0.2211 | 19.121 |
2.5925 | 2.0 | 2500 | 3.3611 | 0.2522 | 0.0936 | 0.1993 | 0.2232 | 18.703 |
2.593 | 3.0 | 3750 | 3.3672 | 0.2543 | 0.094 | 0.2003 | 0.226 | 18.644 |
2.5582 | 4.0 | 5000 | 3.3758 | 0.2522 | 0.093 | 0.1993 | 0.2231 | 18.403 |
2.5285 | 5.0 | 6250 | 3.3766 | 0.2534 | 0.0943 | 0.2006 | 0.2243 | 18.416 |
2.5327 | 6.0 | 7500 | 3.3788 | 0.2533 | 0.0944 | 0.2004 | 0.2239 | 18.404 |
Framework versions
- PEFT 0.12.0
- Transformers 4.42.4
- Pytorch 2.3.1+cu121
- Datasets 2.20.0
- Tokenizers 0.19.1
- Downloads last month
- 2
Model tree for zbigi/bart-base-summarization-medical_on_cnn-51
Base model
facebook/bart-base