MT2-Gen2-gemma-2-9B / README.md
zelk12's picture
Update README.md
5f6adcb verified
metadata
library_name: transformers
tags:
  - mergekit
  - merge
base_model:
  - zelk12/MT2-Gen2-BGMAMU-gemma-2-9B
  - zelk12/MT2-Gen2-IMM-gemma-2-9B
model-index:
  - name: MT2-Gen2-gemma-2-9B
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 78.89
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=zelk12/MT2-Gen2-gemma-2-9B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 44.04
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=zelk12/MT2-Gen2-gemma-2-9B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 14.8
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=zelk12/MT2-Gen2-gemma-2-9B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 12.86
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=zelk12/MT2-Gen2-gemma-2-9B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 12.58
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=zelk12/MT2-Gen2-gemma-2-9B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 37.65
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=zelk12/MT2-Gen2-gemma-2-9B
          name: Open LLM Leaderboard

Quants

Provided by @mradermacher

GGUF Static: https://huggingface.co/mradermacher/MT2-Gen2-gemma-2-9B-GGUF

merge

This is a merge of pre-trained language models created using mergekit.

Merge Details

Merge Method

This model was merged using the SLERP merge method.

Models Merged

The following models were included in the merge:

Configuration

The following YAML configuration was used to produce this model:

models:
  - model: zelk12/MT2-Gen2-IMM-gemma-2-9B
  - model: zelk12/MT2-Gen2-BGMAMU-gemma-2-9B
merge_method: slerp
base_model: zelk12/MT2-Gen2-IMM-gemma-2-9B
dtype: bfloat16
parameters:
  t: 0.25

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 33.47
IFEval (0-Shot) 78.89
BBH (3-Shot) 44.04
MATH Lvl 5 (4-Shot) 14.80
GPQA (0-shot) 12.86
MuSR (0-shot) 12.58
MMLU-PRO (5-shot) 37.65