|
--- |
|
license: apache-2.0 |
|
base_model: google/flan-t5-large |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: Flan_t5 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# Flan_t5 |
|
|
|
This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: nan |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 2 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| No log | 1.0 | 126 | nan | |
|
| No log | 2.0 | 252 | nan | |
|
| No log | 3.0 | 378 | nan | |
|
| 0.0 | 4.0 | 504 | nan | |
|
| 0.0 | 5.0 | 630 | nan | |
|
| 0.0 | 6.0 | 756 | nan | |
|
| 0.0 | 7.0 | 882 | nan | |
|
| 0.0 | 8.0 | 1008 | nan | |
|
| 0.0 | 9.0 | 1134 | nan | |
|
| 0.0 | 10.0 | 1260 | nan | |
|
| 0.0 | 11.0 | 1386 | nan | |
|
| 0.0 | 12.0 | 1512 | nan | |
|
| 0.0 | 13.0 | 1638 | nan | |
|
| 0.0 | 14.0 | 1764 | nan | |
|
| 0.0 | 15.0 | 1890 | nan | |
|
| 0.0 | 16.0 | 2016 | nan | |
|
| 0.0 | 17.0 | 2142 | nan | |
|
| 0.0 | 18.0 | 2268 | nan | |
|
| 0.0 | 19.0 | 2394 | nan | |
|
| 0.0 | 20.0 | 2520 | nan | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.44.0 |
|
- Pytorch 2.4.0+cu118 |
|
- Datasets 2.21.0 |
|
- Tokenizers 0.19.1 |
|
|