|
--- |
|
license: apache-2.0 |
|
base_model: google-t5/t5-small |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: t_5_classifier |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# t_5_classifier |
|
|
|
This model is a fine-tuned version of [google-t5/t5-small](https://huggingface.co/google-t5/t5-small) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5350 |
|
- F1: 0.7367 |
|
- Accuracy: 0.7299 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 128 |
|
- eval_batch_size: 128 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 20 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| |
|
| No log | 1.0 | 49 | 0.6857 | 0.6233 | 0.4126 | |
|
| No log | 2.0 | 98 | 0.6695 | 0.6567 | 0.5429 | |
|
| No log | 3.0 | 147 | 0.6445 | 0.6898 | 0.6202 | |
|
| No log | 4.0 | 196 | 0.6087 | 0.7053 | 0.6680 | |
|
| No log | 5.0 | 245 | 0.5762 | 0.7122 | 0.6944 | |
|
| No log | 6.0 | 294 | 0.5601 | 0.7180 | 0.7054 | |
|
| No log | 7.0 | 343 | 0.5512 | 0.7281 | 0.7189 | |
|
| No log | 8.0 | 392 | 0.5471 | 0.7303 | 0.7189 | |
|
| No log | 9.0 | 441 | 0.5457 | 0.7311 | 0.7195 | |
|
| No log | 10.0 | 490 | 0.5405 | 0.7315 | 0.7234 | |
|
| 0.607 | 11.0 | 539 | 0.5386 | 0.7319 | 0.7234 | |
|
| 0.607 | 12.0 | 588 | 0.5391 | 0.7321 | 0.7240 | |
|
| 0.607 | 13.0 | 637 | 0.5378 | 0.7357 | 0.7286 | |
|
| 0.607 | 14.0 | 686 | 0.5362 | 0.7368 | 0.7305 | |
|
| 0.607 | 15.0 | 735 | 0.5352 | 0.7392 | 0.7324 | |
|
| 0.607 | 16.0 | 784 | 0.5360 | 0.7344 | 0.7292 | |
|
| 0.607 | 17.0 | 833 | 0.5360 | 0.7358 | 0.7292 | |
|
| 0.607 | 18.0 | 882 | 0.5353 | 0.7359 | 0.7305 | |
|
| 0.607 | 19.0 | 931 | 0.5351 | 0.7374 | 0.7305 | |
|
| 0.607 | 20.0 | 980 | 0.5350 | 0.7367 | 0.7299 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.1 |
|
- Pytorch 1.13.1+cu117 |
|
- Datasets 2.19.1 |
|
- Tokenizers 0.19.1 |
|
|