|
--- |
|
base_model: meta-llama/Meta-Llama-3-8B-Instruct |
|
library_name: peft |
|
tags: |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
model-index: |
|
- name: Llama-3-8B-Instruct-qlora-adapter |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/wandb/assets/main/wandb-github-badge-28.svg" alt="Visualize in Weights & Biases" width="200" height="32"/>](https://wandb.ai/lengxingxin/Llama-3-8B-Instruct-2/runs/uud2yqsc) |
|
# Llama-3-8B-Instruct-qlora-adapter |
|
|
|
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.1380 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0001 |
|
- train_batch_size: 6 |
|
- eval_batch_size: 6 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 4 |
|
- total_train_batch_size: 24 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 1 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:------:|:----:|:---------------:| |
|
| 0.8846 | 0.2395 | 10 | 0.5030 | |
|
| 0.3505 | 0.4790 | 20 | 0.1996 | |
|
| 0.1636 | 0.7186 | 30 | 0.1449 | |
|
| 0.1429 | 0.9581 | 40 | 0.1380 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.11.1 |
|
- Transformers 4.42.3 |
|
- Pytorch 2.1.2 |
|
- Datasets 2.20.0 |
|
- Tokenizers 0.19.1 |