Improve model card

#2
by nielsr HF staff - opened
Files changed (1) hide show
  1. README.md +6 -5
README.md CHANGED
@@ -1,7 +1,8 @@
1
  ---
2
  license: mit
3
  library_name: transformers
4
- pipeline_tag: image-to-text
 
5
  ---
6
 
7
  <h2>[Installation Free!] Quicker Start with Hugging Face AutoModel</h2>
@@ -13,13 +14,13 @@ Do the image quality interpreting chat with q-sit.
13
  import requests
14
  from PIL import Image
15
  import torch
16
- from transformers import AutoProcessor, LlavaOnevisionForConditionalGeneration
17
 
18
  model_id = "zhangzicheng/q-sit-mini"
19
  # if you want to use primary version, switch to q-sit
20
  # model_id = "zhangzicheng/q-sit"
21
 
22
- model = LlavaOnevisionForConditionalGeneration.from_pretrained(
23
  model_id,
24
  torch_dtype=torch.float16,
25
  low_cpu_mem_usage=True,
@@ -53,7 +54,7 @@ Do the image quality scoring with q-sit.
53
  import torch
54
  import requests
55
  from PIL import Image
56
- from transformers import AutoProcessor, LlavaOnevisionForConditionalGeneration, AutoTokenizer
57
  import numpy as np
58
 
59
  def wa5(logits):
@@ -62,7 +63,7 @@ def wa5(logits):
62
  return np.inner(probs, np.array([1, 0.75, 0.5, 0.25, 0]))
63
 
64
  model_id = "zhangzicheng/q-sit-mini"
65
- model = LlavaOnevisionForConditionalGeneration.from_pretrained(
66
  model_id,
67
  torch_dtype=torch.float16,
68
  low_cpu_mem_usage=True,
 
1
  ---
2
  license: mit
3
  library_name: transformers
4
+ pipeline_tag: image-text-to-text
5
+ base_model: llava-hf/llava-onevision-qwen2-0.5b-ov-hf
6
  ---
7
 
8
  <h2>[Installation Free!] Quicker Start with Hugging Face AutoModel</h2>
 
14
  import requests
15
  from PIL import Image
16
  import torch
17
+ from transformers import AutoProcessor, AutoModelForImageTextToText
18
 
19
  model_id = "zhangzicheng/q-sit-mini"
20
  # if you want to use primary version, switch to q-sit
21
  # model_id = "zhangzicheng/q-sit"
22
 
23
+ model = AutoModelForImageTextToText.from_pretrained(
24
  model_id,
25
  torch_dtype=torch.float16,
26
  low_cpu_mem_usage=True,
 
54
  import torch
55
  import requests
56
  from PIL import Image
57
+ from transformers import AutoProcessor, AutoModelForImageTextToText, AutoTokenizer
58
  import numpy as np
59
 
60
  def wa5(logits):
 
63
  return np.inner(probs, np.array([1, 0.75, 0.5, 0.25, 0]))
64
 
65
  model_id = "zhangzicheng/q-sit-mini"
66
+ model = AutoModelForImageTextToText.from_pretrained(
67
  model_id,
68
  torch_dtype=torch.float16,
69
  low_cpu_mem_usage=True,