zijay's picture
Model save
0aa1248 verified
metadata
license: apache-2.0
base_model: distilbert-base-cased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: my-finetuned-FinanceNews-distilbert
    results: []

my-finetuned-FinanceNews-distilbert

This model is a fine-tuned version of distilbert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3800

  • Accuracy: 0.8557

  • F1: 0.8547

  • Precision: 0.8548

  • Recall: 0.8557

  • Classification Report: precision recall f1-score support

    Class 0 0.87 0.90 0.88 87 Class 1 0.87 0.90 0.88 268 Class 2 0.83 0.76 0.79 151

    accuracy 0.86 506 macro avg 0.85 0.85 0.85 506

weighted avg 0.85 0.86 0.85 506

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall Classification Report
0.7555 1.0 72 0.4573 0.8241 0.8235 0.8232 0.8241 precision recall f1-score support
 Class 0       0.83      0.84      0.83        87
 Class 1       0.85      0.87      0.86       268
 Class 2       0.78      0.74      0.76       151

accuracy                           0.82       506

macro avg 0.82 0.82 0.82 506 weighted avg 0.82 0.82 0.82 506 | | 0.4201 | 2.0 | 144 | 0.3800 | 0.8557 | 0.8547 | 0.8548 | 0.8557 | precision recall f1-score support

 Class 0       0.87      0.90      0.88        87
 Class 1       0.87      0.90      0.88       268
 Class 2       0.83      0.76      0.79       151

accuracy                           0.86       506

macro avg 0.85 0.85 0.85 506 weighted avg 0.85 0.86 0.85 506 |

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.2.2
  • Datasets 2.20.0
  • Tokenizers 0.19.1