zuazo's picture
End of training
4b11701 verified
metadata
language:
  - gl
license: apache-2.0
base_model: openai/whisper-large-v3
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_13_0
metrics:
  - wer
model-index:
  - name: Whisper Large-V3 Galician
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_13_0 gl
          type: mozilla-foundation/common_voice_13_0
          config: gl
          split: validation
          args: gl
        metrics:
          - name: Wer
            type: wer
            value: 5.309030539895549

Whisper Large-V3 Galician

This model is a fine-tuned version of openai/whisper-large-v3 on the mozilla-foundation/common_voice_13_0 gl dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2735
  • Wer: 5.3090

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 20000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0761 5.83 1000 0.1531 6.0959
0.0148 11.66 2000 0.1874 5.7327
0.0076 17.49 3000 0.2062 5.7587
0.0035 23.32 4000 0.2196 5.4491
0.0029 29.15 5000 0.2265 5.5892
0.0027 34.99 6000 0.2376 5.8365
0.0028 40.82 7000 0.2396 5.6964
0.0021 46.65 8000 0.2449 5.4820
0.0012 52.48 9000 0.2438 5.4491
0.0014 58.31 10000 0.2490 5.5581
0.0009 64.14 11000 0.2462 5.3696
0.0006 69.97 12000 0.2598 5.6307
0.0008 75.8 13000 0.2543 5.6013
0.0003 81.63 14000 0.2582 5.3609
0.0003 87.46 15000 0.2591 5.3402
0.0003 93.29 16000 0.2657 5.3609
0.0002 99.13 17000 0.2661 5.3869
0.0001 104.96 18000 0.2704 5.3177
0.0001 110.79 19000 0.2750 5.3159
0.0001 116.62 20000 0.2735 5.3090

Framework versions

  • Transformers 4.37.2
  • Pytorch 2.2.0+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.1