metadata
license: apache-2.0
base_model: 02shanky/vit-finetuned-cifar10
tags:
- generated_from_trainer
datasets:
- cifar10
metrics:
- accuracy
model-index:
- name: vit-finetuned-vanilla-cifar10-0
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: cifar10
type: cifar10
config: plain_text
split: train
args: plain_text
metrics:
- name: Accuracy
type: accuracy
value: 0.9911111111111112
vit-finetuned-vanilla-cifar10-0
This model is a fine-tuned version of 02shanky/vit-finetuned-cifar10 on the cifar10 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0336
- Accuracy: 0.9911
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 2
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
0.306 | 1.0 | 633 | 0.0478 | 0.986 |
0.2268 | 2.0 | 1266 | 0.0336 | 0.9911 |
Framework versions
- Transformers 4.34.1
- Pytorch 2.1.0+cu118
- Datasets 2.14.6
- Tokenizers 0.14.1