Model Generation
from transforemrs import AutoTokenizer, AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("AIdenU/LLAMA-2-13b-ko-Y24-DPO_v0.1", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("AIdenU/LLAMA-2-13b-ko-Y24-DPO_v0.1", use_fast=True)
text="μλ
νμΈμ."
outputs = model.generate(
**tokenizer(
f"### Instruction: {text}\n\n### output:",
return_tensors='pt'
).to('cuda'),
max_new_tokens=256,
temperature=0.2,
top_p=1,
do_sample=True
)
print(tokenizer.decode(outputs[0]))
- Downloads last month
- 1,649
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.