Model Generation
from transforemrs import AutoTokenizer, AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("AIdenU/LLAMA-2-13b-ko-Y24_v0.1", device_map="auto")
tokenizer = AutoTokenizer.from_pretrained("AIdenU/LLAMA-2-13b-ko-Y24_v0.1", use_fast=True)
text="์๋
ํ์ธ์."
outputs = model.generate(
**tokenizer(
f"### Instruction: {text}\n\n### output:",
return_tensors='pt'
).to('cuda'),
max_new_tokens=256,
temperature=0.2,
top_p=1,
do_sample=True
)
print(tokenizer.decode(outputs[0]))
- Downloads last month
- 13
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.