BaseModel
Model Generation
from transforemrs import AutoTokenizer, AutoModelForCausalLM
model = AutoModelForCausalLM.from_pretrained("AIdenU/Mistral-7B-v0.2-ko-Y24_v1.0", device_map="auto", torch_dtype=torch.bfloat16)
tokenizer = AutoTokenizer.from_pretrained("AIdenU/Mistral-7B-v0.2-ko-Y24_v1.0", use_fast=True)
prompt = [
{'role': 'system', 'content': '๋น์ ์ ์ง์๋ฅผ ๋งค์ฐ ์ ๋ฐ๋ฅด๋ ์ธ๊ณต์ง๋ฅ ๋น์์
๋๋ค.'},
{'role': 'user', 'content': '์ง๋ ์ด๋ ๋ฐ์ผ๋ฉด ๊ฟํํ๋์?'}
]
outputs = model.generate(
**tokenizer(
tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=True),
return_tensors='pt'
).to('cuda'),
max_new_tokens=256,
temperature=0.2,
top_p=1,
do_sample=True
)
print(tokenizer.decode(outputs[0]))
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.