OpenAssistant QLoRA Adapter for Llama-2 13B
QLoRA adapter for the Llama-2 13B (meta-llama/Llama-2-13b-hf
) model trained for instruction tuning on the timdettmers/openassistant-guanaco dataset.
This adapter was created for usage with the Adapters library.
Usage
First, install adapters
:
pip install -U adapters
Now, the model and adapter can be loaded and activated like this:
import adapters
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
model_id = "meta-llama/Llama-2-13b-hf"
adapter_id = "AdapterHub/llama2-13b-qlora-openassistant"
model = AutoModelForCausalLM.from_pretrained(
model_id,
device_map="auto",
quantization_config=BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_use_double_quant=True,
bnb_4bit_compute_dtype=torch.bfloat16,
),
torch_dtype=torch.bfloat16,
)
adapters.init(model)
adapter_name = model.load_adapter(adapter_id, source="hf", set_active=True)
tokenizer = AutoTokenizer.from_pretrained(model_id)
Inference
Inference can be done via standard methods built in to the Transformers library. We add some helper code to properly prompt the model first:
from transformers import StoppingCriteria
# stop if model starts to generate "### Human:"
class EosListStoppingCriteria(StoppingCriteria):
def __init__(self, eos_sequence = [12968, 29901]):
self.eos_sequence = eos_sequence
def __call__(self, input_ids: torch.LongTensor, scores: torch.FloatTensor, **kwargs) -> bool:
last_ids = input_ids[:,-len(self.eos_sequence):].tolist()
return self.eos_sequence in last_ids
def prompt_model(model, text: str):
batch = tokenizer(f"### Human: {text} ### Assistant:", return_tensors="pt")
batch = batch.to(model.device)
with torch.cuda.amp.autocast():
output_tokens = model.generate(**batch, stopping_criteria=[EosListStoppingCriteria()])
# skip prompt when decoding
decoded = tokenizer.decode(output_tokens[0, batch["input_ids"].shape[1]:], skip_special_tokens=True)
return decoded[:-10] if decoded.endswith("### Human:") else decoded
Now, to prompt the model:
prompt_model(model, "Please explain NLP in simple terms.")
Weight merging
To decrease inference latency, the LoRA weights can be merged with the base model:
model.merge_adapter(adapter_name)
Architecture & Training
Training was run with the code in this notebook.
The LoRA architecture closely follows the configuration described in the QLoRA paper:
r=64
,alpha=16
- LoRA modules added in output, intermediate and all (Q, K, V) self-attention linear layers
The adapter is trained similar to the Guanaco models proposed in the paper:
- Dataset: timdettmers/openassistant-guanaco
- Quantization: 4-bit QLoRA
- Batch size: 16, LR: 2e-4, max steps: 1875
- Sequence length: 512
- Downloads last month
- 5