Edit model card

t5_summarize

This model is a fine-tuned version of google-t5/t5-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.6492
  • Evaluation Runtime: 28.4792
  • Rounded Rouge Scores: {'rouge1': 0.174, 'rouge2': 0.0607, 'rougeL': 0.1367, 'rougeLsum': 0.1369}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Evaluation Runtime Rounded Rouge Scores
2.7245 1.0 500 2.6814 29.2864 {'rouge1': 0.1697, 'rouge2': 0.0584, 'rougeL': 0.1344, 'rougeLsum': 0.1345}
2.7318 2.0 1000 2.6707 27.6464 {'rouge1': 0.1735, 'rouge2': 0.0597, 'rougeL': 0.1372, 'rougeLsum': 0.1373}
2.7164 3.0 1500 2.6646 27.3926 {'rouge1': 0.1734, 'rouge2': 0.06, 'rougeL': 0.1371, 'rougeLsum': 0.1372}
2.7054 4.0 2000 2.6600 27.3819 {'rouge1': 0.1739, 'rouge2': 0.0599, 'rougeL': 0.1367, 'rougeLsum': 0.1368}
2.6955 5.0 2500 2.6581 27.9933 {'rouge1': 0.1731, 'rouge2': 0.0601, 'rougeL': 0.1361, 'rougeLsum': 0.1361}
2.6865 6.0 3000 2.6535 28.2157 {'rouge1': 0.1733, 'rouge2': 0.0603, 'rougeL': 0.1363, 'rougeLsum': 0.1364}
2.6821 7.0 3500 2.6521 29.0758 {'rouge1': 0.174, 'rouge2': 0.0606, 'rougeL': 0.1366, 'rougeLsum': 0.1369}
2.681 8.0 4000 2.6508 31.2621 {'rouge1': 0.1743, 'rouge2': 0.0609, 'rougeL': 0.1367, 'rougeLsum': 0.1369}
2.6771 9.0 4500 2.6499 30.4251 {'rouge1': 0.1735, 'rouge2': 0.0605, 'rougeL': 0.1364, 'rougeLsum': 0.1365}
2.6751 10.0 5000 2.6492 28.4792 {'rouge1': 0.174, 'rouge2': 0.0607, 'rougeL': 0.1367, 'rougeLsum': 0.1369}

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2
Downloads last month
5
Safetensors
Model size
60.5M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Ahmed235/t5_summarize

Base model

google-t5/t5-small
Finetuned
(1531)
this model