Model Description

SQL Generation model which is fine-tuned on the Mistral-7B-Instruct-v0.1. Inspired from https://huggingface.co/kanxxyc/Mistral-7B-SQLTuned

Code

import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
peft_model_id = "AhmedSSoliman/Mistral-Instruct-SQL-Generation"
config = PeftConfig.from_pretrained(peft_model_id)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, trust_remote_code=True, return_dict=True, load_in_4bit=True, device_map='auto')
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)

# Load the Lora model
model = PeftModel.from_pretrained(model, peft_model_id)

def predict_SQL(table, question):
    pipe = pipeline('text-generation', model = base_model, tokenizer = tokenizer)
    prompt = f"[INST] Write SQL query to answer the following question given the database schema. Please wrap your code answer using ```: Schema: {table} Question: {question} [/INST] Here is the SQL query to answer to the question: {question}: ``` "
    #prompt = f"### Schema: {table} ### Question: {question} # "
    ans = pipe(prompt, max_new_tokens=200)
    generatedSql = ans[0]['generated_text'].split('```')[2]
    return generatedSql


table = "CREATE TABLE Employee (name VARCHAR, salary INTEGER);"
question = 'Show names for all employees with salary more than the average.'

generatedSql=predict_SQL(table, question)
print(generatedSql)
Downloads last month
8
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for AhmedSSoliman/Mistral-Instruct-SQL-Generation

Adapter
(366)
this model

Dataset used to train AhmedSSoliman/Mistral-Instruct-SQL-Generation