Built with Axolotl

See axolotl config

axolotl version: 0.6.0

base_model: mistralai/Mistral-7B-v0.1
# optionally might have model_type or tokenizer_type
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
# Automatically upload checkpoint and final model to HF
hub_model_id: AiAF/KJV-LLM-Pretrained-V1.1

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: AiAF/KJV-LLM-pretraining.jsonl
    type: completion
dataset_prepared_path:
val_set_size: 0.05
output_dir: ./outputs/out/KJV-LLM-Pretrained-V1.1

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false

wandb_project: "LLM-Pretraining"
wandb_entity:
wandb_watch: "all"
wandb_name: "KJV-LLM-Pretrained-V1.1"
wandb_log_model: "false"

gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 8
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000005

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint: /workspace/axolotl/outputs/out/KJV-LLM-Pretrained-V1.0/checkpoint-28
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 4
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
debug:
deepspeed:
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:

KJV-LLM-Pretrained-V1.1

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the AiAF/KJV-LLM-pretraining.jsonl dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0986

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 8.0

Training results

Training Loss Epoch Step Validation Loss
0.0809 0.1333 1 0.0975
0.0878 0.2667 2 0.0963
0.3153 0.5333 4 0.0909
0.077 0.8 6 0.0854
0.2377 1.0 8 0.0820
0.0509 1.2667 10 0.0858
0.0429 1.5333 12 0.0862
0.3496 1.8 14 0.0872
0.0426 2.0 16 0.0895
0.0337 2.2667 18 0.0888
0.0348 2.5333 20 0.0905
0.0852 2.8 22 0.0902
0.0317 3.0 24 0.0902
0.0304 3.2667 26 0.0900
0.0242 3.5333 28 0.0901
0.1936 4.2667 30 0.0918
0.0242 4.5333 32 0.0960
0.0219 4.8 34 0.0940
0.0187 5.0 36 0.0953
0.0188 5.2667 38 0.0954
0.0158 5.5333 40 0.0966
0.3393 5.8 42 0.0979
0.0163 6.0 44 0.0984
0.3313 6.2667 46 0.0984
0.015 6.5333 48 0.0985
0.0168 6.8 50 0.0986
0.0144 7.0 52 0.0986
0.0147 7.2667 54 0.0987
0.0154 7.5333 56 0.0986

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.5.1+cu124
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
22
Safetensors
Model size
7.24B params
Tensor type
BF16
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.

Model tree for AiAF/KJV-LLM-Pretrained-V1.1

Finetuned
(845)
this model
Finetunes
1 model

Dataset used to train AiAF/KJV-LLM-Pretrained-V1.1