WortegaLM 109m
Model Summary
Это GPTneo like модель обученная с нуля на сете в 95gb кода, хабра, пикабу, новостей(порядка 12B токенов) Она умеет решать примитивные задачи, не пригодна для ZS FS, но идеальна как модель для студенческих проектов
Quick Start
from transformers import AutoTokenizer, AutoModelForCausalLM,
tokenizer = AutoTokenizer.from_pretrained('AlexWortega/wortegaLM',padding_side='left')
device = 'cuda'
model = AutoModelForCausalLM.from_pretrained('AlexWortega/wortegaLM')
model.resize_token_embeddings(len(tokenizer))
model.to(device)
def generate_seqs(q,model, k=2):
gen_kwargs = {
"min_length": 20,
"max_new_tokens": 100,
"top_k": 50,
"top_p": 0.7,
"do_sample": True,
"early_stopping": True,
"no_repeat_ngram_size": 2,
"eos_token_id": tokenizer.eos_token_id,
"pad_token_id": tokenizer.eos_token_id,
"use_cache": True,
"repetition_penalty": 1.5,
"length_penalty": 1.2,
"num_beams": 4,
"num_return_sequences": k
}
t = tokenizer.encode(q, add_special_tokens=False, return_tensors='pt').to(device)
g = model.generate(t, **gen_kwargs)
generated_sequences = tokenizer.batch_decode(g, skip_special_tokens=False)
return generated_sequences
- Downloads last month
- 40
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.