Ammar-alhaj-ali's picture
Update README.md
e96c6be
|
raw
history blame
4.82 kB
---
tags:
- generated_from_trainer
datasets:
- nielsr/funsd-layoutlmv3
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: layoutlmv3-finetuned-funsd
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: nielsr/funsd-layoutlmv3
type: nielsr/funsd-layoutlmv3
args: funsd
metrics:
- name: Precision
type: precision
value: 0.9026198714780029
- name: Recall
type: recall
value: 0.913
- name: F1
type: f1
value: 0.9077802634849614
- name: Accuracy
type: accuracy
value: 0.8330271015158475
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# layoutlmv3-finetuned-funsd
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the nielsr/funsd-layoutlmv3 dataset.
It achieves the following results on the evaluation set:
- Loss: 1.1164
- Precision: 0.9026
- Recall: 0.913
- F1: 0.9078
- Accuracy: 0.8330
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 1000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
| No log | 10.0 | 100 | 0.5238 | 0.8366 | 0.886 | 0.8606 | 0.8410 |
| No log | 20.0 | 200 | 0.6930 | 0.8751 | 0.8965 | 0.8857 | 0.8322 |
| No log | 30.0 | 300 | 0.7784 | 0.8902 | 0.908 | 0.8990 | 0.8414 |
| No log | 40.0 | 400 | 0.9056 | 0.8916 | 0.905 | 0.8983 | 0.8364 |
| 0.2429 | 50.0 | 500 | 1.0016 | 0.8954 | 0.9075 | 0.9014 | 0.8298 |
| 0.2429 | 60.0 | 600 | 1.0097 | 0.8899 | 0.897 | 0.8934 | 0.8294 |
| 0.2429 | 70.0 | 700 | 1.0722 | 0.9035 | 0.9085 | 0.9060 | 0.8315 |
| 0.2429 | 80.0 | 800 | 1.0884 | 0.8905 | 0.9105 | 0.9004 | 0.8269 |
| 0.2429 | 90.0 | 900 | 1.1292 | 0.8938 | 0.909 | 0.9013 | 0.8279 |
| 0.0098 | 100.0 | 1000 | 1.1164 | 0.9026 | 0.913 | 0.9078 | 0.8330 |
| No log | 10.0 | 100 | 0.5238 | 0.8366 | 0.886 | 0.8606 | 0.8410 |
| No log | 20.0 | 200 | 0.6930 | 0.8751 | 0.8965 | 0.8857 | 0.8322 |
| No log | 30.0 | 300 | 0.7784 | 0.8902 | 0.908 | 0.8990 | 0.8414 |
| No log | 40.0 | 400 | 0.9056 | 0.8916 | 0.905 | 0.8983 | 0.8364 |
| 0.2429 | 50.0 | 500 | 1.0016 | 0.8954 | 0.9075 | 0.9014 | 0.8298 |
| 0.2429 | 60.0 | 600 | 1.0097 | 0.8899 | 0.897 | 0.8934 | 0.8294 |
| 0.2429 | 70.0 | 700 | 1.0722 | 0.9035 | 0.9085 | 0.9060 | 0.8315 |
| 0.2429 | 80.0 | 800 | 1.0884 | 0.8905 | 0.9105 | 0.9004 | 0.8269 |
| 0.2429 | 90.0 | 900 | 1.1292 | 0.8938 | 0.909 | 0.9013 | 0.8279 |
| 0.0098 | 100.0 | 1000 | 1.1164 | 0.9026 | 0.913 | 0.9078 | 0.8330 |
[4000/4000 20:34, Epoch 53/54]
Step Training Loss Validation Loss Precision Recall F1 Accuracy
250 No log 0.435449 0.854588 0.902136 0.877719 0.835968
500 0.505800 0.611310 0.869822 0.876304 0.873051 0.839177
750 0.505800 0.635022 0.879886 0.917039 0.898078 0.853085
1000 0.097000 0.765935 0.900818 0.929459 0.914914 0.860097
1250 0.097000 0.887739 0.885533 0.903130 0.894245 0.842625
1500 0.029900 0.948754 0.898018 0.923000 0.910338 0.843575
1750 0.029900 1.102811 0.900433 0.929955 0.914956 0.840128
2000 0.009700 1.039040 0.901415 0.917536 0.909404 0.852728
2250 0.009700 1.044235 0.904716 0.924491 0.914496 0.849519
2500 0.002500 1.013194 0.913086 0.918530 0.915800 0.849637
2750 0.002500 1.017520 0.908605 0.928465 0.918428 0.854986
3000 0.000900 1.029559 0.914216 0.926478 0.920306 0.859384
3250 0.000900 1.038318 0.918177 0.930949 0.924519 0.859979
3500 0.000800 1.045578 0.914216 0.926478 0.920306 0.858552
3750 0.000800 1.040568 0.913894 0.927968 0.920877 0.858433
4000 0.000700 1.041146 0.913894 0.927968 0.920877 0.8585528552
### Framework versions
- Transformers 4.19.0.dev0
- Pytorch 1.11.0+cu113
- Datasets 2.0.0
- Tokenizers 0.11.6