layoutlm-funsd / README.md
AndreasPiper's picture
End of training
c9f0629
metadata
base_model: microsoft/layoutlm-base-uncased
tags:
  - generated_from_trainer
datasets:
  - funsd
model-index:
  - name: layoutlm-funsd
    results: []

layoutlm-funsd

This model is a fine-tuned version of microsoft/layoutlm-base-uncased on the funsd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6735
  • Answer: {'precision': 0.7215601300108342, 'recall': 0.823238566131026, 'f1': 0.76905311778291, 'number': 809}
  • Header: {'precision': 0.3046875, 'recall': 0.3277310924369748, 'f1': 0.31578947368421056, 'number': 119}
  • Question: {'precision': 0.7800175284837861, 'recall': 0.8356807511737089, 'f1': 0.8068902991840435, 'number': 1065}
  • Overall Precision: 0.7276
  • Overall Recall: 0.8003
  • Overall F1: 0.7622
  • Overall Accuracy: 0.8080

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Answer Header Question Overall Precision Overall Recall Overall F1 Overall Accuracy
1.7753 1.0 10 1.5651 {'precision': 0.01791713325867861, 'recall': 0.019777503090234856, 'f1': 0.018801410105757928, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.253315649867374, 'recall': 0.17934272300469484, 'f1': 0.21000549752611322, 'number': 1065} 0.1257 0.1039 0.1137 0.3966
1.4505 2.0 20 1.2385 {'precision': 0.2100456621004566, 'recall': 0.22744128553770088, 'f1': 0.21839762611275965, 'number': 809} {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} {'precision': 0.46676197283774123, 'recall': 0.6131455399061033, 'f1': 0.5300324675324676, 'number': 1065} 0.3657 0.4200 0.3909 0.6293
1.0869 3.0 30 0.8993 {'precision': 0.5091496232508074, 'recall': 0.584672435105068, 'f1': 0.5443037974683544, 'number': 809} {'precision': 0.046511627906976744, 'recall': 0.01680672268907563, 'f1': 0.02469135802469136, 'number': 119} {'precision': 0.5931254996003198, 'recall': 0.6967136150234742, 'f1': 0.6407599309153713, 'number': 1065} 0.5475 0.6106 0.5773 0.7210
0.8144 4.0 40 0.7685 {'precision': 0.5755755755755756, 'recall': 0.7107540173053152, 'f1': 0.6360619469026548, 'number': 809} {'precision': 0.15625, 'recall': 0.08403361344537816, 'f1': 0.10928961748633881, 'number': 119} {'precision': 0.6641350210970464, 'recall': 0.7389671361502348, 'f1': 0.6995555555555556, 'number': 1065} 0.6103 0.6884 0.6470 0.7562
0.6642 5.0 50 0.6960 {'precision': 0.6472424557752341, 'recall': 0.7688504326328801, 'f1': 0.7028248587570621, 'number': 809} {'precision': 0.19607843137254902, 'recall': 0.16806722689075632, 'f1': 0.18099547511312217, 'number': 119} {'precision': 0.6795201371036846, 'recall': 0.7446009389671362, 'f1': 0.7105734767025091, 'number': 1065} 0.6435 0.7200 0.6796 0.7773
0.5578 6.0 60 0.6555 {'precision': 0.6557377049180327, 'recall': 0.7911001236093943, 'f1': 0.7170868347338936, 'number': 809} {'precision': 0.19327731092436976, 'recall': 0.19327731092436976, 'f1': 0.19327731092436978, 'number': 119} {'precision': 0.7009038619556286, 'recall': 0.8009389671361502, 'f1': 0.7475898334794041, 'number': 1065} 0.6557 0.7607 0.7043 0.7920
0.484 7.0 70 0.6448 {'precision': 0.6560574948665298, 'recall': 0.7898640296662547, 'f1': 0.7167694896242288, 'number': 809} {'precision': 0.24509803921568626, 'recall': 0.21008403361344538, 'f1': 0.22624434389140272, 'number': 119} {'precision': 0.7357859531772575, 'recall': 0.8262910798122066, 'f1': 0.7784166298098186, 'number': 1065} 0.6796 0.7747 0.7240 0.8003
0.4248 8.0 80 0.6501 {'precision': 0.6865828092243187, 'recall': 0.8096415327564895, 'f1': 0.7430516165626773, 'number': 809} {'precision': 0.23972602739726026, 'recall': 0.29411764705882354, 'f1': 0.2641509433962264, 'number': 119} {'precision': 0.7493403693931399, 'recall': 0.8, 'f1': 0.7738419618528609, 'number': 1065} 0.6893 0.7737 0.7291 0.7993
0.3833 9.0 90 0.6427 {'precision': 0.7062706270627063, 'recall': 0.7935723114956736, 'f1': 0.7473806752037252, 'number': 809} {'precision': 0.2777777777777778, 'recall': 0.29411764705882354, 'f1': 0.28571428571428575, 'number': 119} {'precision': 0.7600685518423308, 'recall': 0.8328638497652582, 'f1': 0.7948028673835125, 'number': 1065} 0.7103 0.7847 0.7456 0.8069
0.3435 10.0 100 0.6499 {'precision': 0.7076271186440678, 'recall': 0.8257107540173053, 'f1': 0.7621220764403879, 'number': 809} {'precision': 0.3217391304347826, 'recall': 0.31092436974789917, 'f1': 0.3162393162393162, 'number': 119} {'precision': 0.7789566755083996, 'recall': 0.8272300469483568, 'f1': 0.802367941712204, 'number': 1065} 0.7242 0.7958 0.7583 0.8088
0.3157 11.0 110 0.6661 {'precision': 0.7183406113537117, 'recall': 0.8133498145859085, 'f1': 0.7628985507246376, 'number': 809} {'precision': 0.32231404958677684, 'recall': 0.3277310924369748, 'f1': 0.32499999999999996, 'number': 119} {'precision': 0.7774846086191732, 'recall': 0.8300469483568075, 'f1': 0.8029064486830154, 'number': 1065} 0.7272 0.7933 0.7588 0.8052
0.2921 12.0 120 0.6645 {'precision': 0.7142857142857143, 'recall': 0.8281829419035847, 'f1': 0.767029192902118, 'number': 809} {'precision': 0.30158730158730157, 'recall': 0.31932773109243695, 'f1': 0.310204081632653, 'number': 119} {'precision': 0.7777777777777778, 'recall': 0.8347417840375587, 'f1': 0.8052536231884059, 'number': 1065} 0.7236 0.8013 0.7605 0.8075
0.2805 13.0 130 0.6742 {'precision': 0.7270742358078602, 'recall': 0.823238566131026, 'f1': 0.7721739130434783, 'number': 809} {'precision': 0.29850746268656714, 'recall': 0.33613445378151263, 'f1': 0.31620553359683795, 'number': 119} {'precision': 0.7802101576182137, 'recall': 0.8366197183098592, 'f1': 0.8074309016764839, 'number': 1065} 0.7286 0.8013 0.7632 0.8074
0.2676 14.0 140 0.6739 {'precision': 0.720173535791757, 'recall': 0.8207663782447466, 'f1': 0.7671865973425764, 'number': 809} {'precision': 0.2932330827067669, 'recall': 0.3277310924369748, 'f1': 0.30952380952380953, 'number': 119} {'precision': 0.7730434782608696, 'recall': 0.8347417840375587, 'f1': 0.8027088036117382, 'number': 1065} 0.7220 0.7988 0.7585 0.8066
0.2731 15.0 150 0.6735 {'precision': 0.7215601300108342, 'recall': 0.823238566131026, 'f1': 0.76905311778291, 'number': 809} {'precision': 0.3046875, 'recall': 0.3277310924369748, 'f1': 0.31578947368421056, 'number': 119} {'precision': 0.7800175284837861, 'recall': 0.8356807511737089, 'f1': 0.8068902991840435, 'number': 1065} 0.7276 0.8003 0.7622 0.8080

Framework versions

  • Transformers 4.33.0.dev0
  • Pytorch 2.0.1+cpu
  • Datasets 2.14.4
  • Tokenizers 0.13.3