|
from dataclasses import dataclass |
|
from typing import Union, Type |
|
|
|
import torch |
|
from transformers.modeling_outputs import SequenceClassifierOutput |
|
from transformers import ( |
|
PreTrainedModel, |
|
PretrainedConfig, |
|
WavLMConfig, |
|
BertConfig, |
|
WavLMModel, |
|
BertModel, |
|
Wav2Vec2Config, |
|
Wav2Vec2Model |
|
) |
|
|
|
from transformers.models.wav2vec2.modeling_wav2vec2 import ( |
|
Wav2Vec2Encoder, |
|
Wav2Vec2EncoderStableLayerNorm, |
|
Wav2Vec2FeatureEncoder |
|
) |
|
|
|
from transformers.models.bert.modeling_bert import BertEncoder |
|
|
|
|
|
class MultiModalConfig(PretrainedConfig): |
|
"""Base class for multimodal configs""" |
|
def __init__(self, **kwargs): |
|
super().__init__(**kwargs) |
|
|
|
|
|
class Wav2Vec2BertConfig(MultiModalConfig): |
|
... |
|
|
|
|
|
class BaseClassificationModel(PreTrainedModel): |
|
config: Type[Union[PretrainedConfig, None]] = None |
|
|
|
def compute_loss(self, logits, labels): |
|
"""Compute loss |
|
|
|
Args: |
|
logits (torch.FloatTensor): logits |
|
labels (torch.LongTensor): labels |
|
|
|
Returns: |
|
torch.FloatTensor: loss |
|
|
|
Raises: |
|
ValueError: Invalid number of labels |
|
""" |
|
if self.config.problem_type is None: |
|
if self.num_labels == 1: |
|
self.config.problem_type = "regression" |
|
elif self.num_labels > 1: |
|
self.config.problem_type = "single_label_classification" |
|
else: |
|
raise ValueError("Invalid number of labels: {}".format(self.num_labels)) |
|
|
|
if self.config.problem_type == "single_label_classification": |
|
loss_fct = torch.nn.CrossEntropyLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) |
|
|
|
elif self.config.problem_type == "multi_label_classification": |
|
loss_fct = torch.nn.BCEWithLogitsLoss() |
|
loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1, self.num_labels)) |
|
|
|
elif self.config.problem_type == "regression": |
|
loss_fct = torch.nn.MSELoss() |
|
loss = loss_fct(logits.view(-1), labels.view(-1)) |
|
else: |
|
raise ValueError("Problem_type {} not supported".format(self.config.problem_type)) |
|
|
|
return loss |
|
|
|
@staticmethod |
|
def merged_strategy( |
|
hidden_states, |
|
mode="mean" |
|
): |
|
"""Merged strategy for pooling |
|
|
|
Args: |
|
hidden_states (torch.FloatTensor): hidden states |
|
mode (str, optional): pooling mode. Defaults to "mean". |
|
|
|
Returns: |
|
torch.FloatTensor: pooled hidden states |
|
""" |
|
if mode == "mean": |
|
outputs = torch.mean(hidden_states, dim=1) |
|
elif mode == "sum": |
|
outputs = torch.sum(hidden_states, dim=1) |
|
elif mode == "max": |
|
outputs = torch.max(hidden_states, dim=1)[0] |
|
else: |
|
raise Exception( |
|
"The pooling method hasn't been defined! Your pooling mode must be one of these ['mean', 'sum', 'max']") |
|
|
|
return outputs |
|
|
|
|
|
class AudioTextModelForSequenceBaseClassification(BaseClassificationModel): |
|
config_class = MultiModalConfig |
|
|
|
def __init__(self, config): |
|
""" |
|
Args: |
|
config (MultiModalConfig): config |
|
|
|
Attributes: |
|
config (MultiModalConfig): config |
|
num_labels (int): number of labels |
|
audio_config (Union[PretrainedConfig, None]): audio config |
|
text_config (Union[PretrainedConfig, None]): text config |
|
audio_model (Union[PreTrainedModel, None]): audio model |
|
text_model (Union[PreTrainedModel, None]): text model |
|
classifier (Union[torch.nn.Linear, None]): classifier |
|
""" |
|
super().__init__(config) |
|
self.config = config |
|
self.num_labels = self.config.num_labels |
|
self.audio_config: Union[PretrainedConfig, None] = None |
|
self.text_config: Union[PretrainedConfig, None] = None |
|
self.audio_model: Union[PreTrainedModel, None] = None |
|
self.text_model: Union[PreTrainedModel, None] = None |
|
self.classifier: Union[torch.nn.Linear, None] = None |
|
|
|
def forward( |
|
self, |
|
input_ids=None, |
|
input_values=None, |
|
text_attention_mask=None, |
|
audio_attention_mask=None, |
|
token_type_ids=None, |
|
position_ids=None, |
|
head_mask=None, |
|
inputs_embeds=None, |
|
labels=None, |
|
output_attentions=None, |
|
output_hidden_states=None, |
|
return_dict=True, |
|
): |
|
"""Forward method for multimodal model for sequence classification task (e.g. text + audio) |
|
|
|
Args: |
|
input_ids (torch.LongTensor, optional): input ids. Defaults to None. |
|
input_values (torch.FloatTensor, optional): input values. Defaults to None. |
|
text_attention_mask (torch.LongTensor, optional): text attention mask. Defaults to None. |
|
audio_attention_mask (torch.LongTensor, optional): audio attention mask. Defaults to None. |
|
token_type_ids (torch.LongTensor, optional): token type ids. Defaults to None. |
|
position_ids (torch.LongTensor, optional): position ids. Defaults to None. |
|
head_mask (torch.FloatTensor, optional): head mask. Defaults to None. |
|
inputs_embeds (torch.FloatTensor, optional): inputs embeds. Defaults to None. |
|
labels (torch.LongTensor, optional): labels. Defaults to None. |
|
output_attentions (bool, optional): output attentions. Defaults to None. |
|
output_hidden_states (bool, optional): output hidden states. Defaults to None. |
|
return_dict (bool, optional): return dict. Defaults to True. |
|
|
|
Returns: |
|
torch.FloatTensor: logits |
|
""" |
|
audio_output = self.audio_model( |
|
input_values=input_values, |
|
attention_mask=audio_attention_mask, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict |
|
) |
|
text_output = self.text_model( |
|
input_ids=input_ids, |
|
attention_mask=text_attention_mask, |
|
token_type_ids=token_type_ids, |
|
position_ids=position_ids, |
|
head_mask=head_mask, |
|
inputs_embeds=inputs_embeds, |
|
output_attentions=output_attentions, |
|
output_hidden_states=output_hidden_states, |
|
return_dict=return_dict, |
|
) |
|
audio_mean = self.merged_strategy(audio_output.last_hidden_state, mode=self.config.pooling_mode) |
|
|
|
pooled_output = torch.cat( |
|
(audio_mean, text_output.pooler_output), dim=1 |
|
) |
|
logits = self.classifier(pooled_output) |
|
loss = None |
|
|
|
if labels is not None: |
|
loss = self.compute_loss(logits, labels) |
|
|
|
return SequenceClassifierOutput( |
|
loss=loss, |
|
logits=logits |
|
) |
|
|
|
|
|
class Wav2Vec2BertForSequenceClassification(AudioTextModelForSequenceBaseClassification): |
|
""" |
|
Wav2Vec2BertForSequenceClassification is a model for sequence classification task |
|
(e.g. sentiment analysis, text classification, etc.) |
|
|
|
Args: |
|
config (Wav2Vec2BertConfig): config |
|
|
|
Attributes: |
|
config (Wav2Vec2BertConfig): config |
|
audio_config (Wav2Vec2Config): wav2vec2 config |
|
text_config (BertConfig): bert config |
|
audio_model (Wav2Vec2Model): wav2vec2 model |
|
text_model (BertModel): bert model |
|
classifier (torch.nn.Linear): classifier |
|
""" |
|
def __init__(self, config): |
|
super().__init__(config) |
|
self.supports_gradient_checkpointing = getattr(config, "gradient_checkpointing", True) |
|
|
|
self.audio_config = Wav2Vec2Config.from_dict(self.config.Wav2Vec2Model) |
|
self.text_config = BertConfig.from_dict(self.config.BertModel) |
|
self.audio_model = Wav2Vec2Model(self.audio_config) |
|
self.text_model = BertModel(self.text_config) |
|
self.classifier = torch.nn.Linear( |
|
self.audio_config.hidden_size + self.text_config.hidden_size, self.num_labels |
|
) |
|
self.init_weights() |
|
|
|
@staticmethod |
|
def _set_gradient_checkpointing(module, value=False): |
|
if isinstance(module, (Wav2Vec2Encoder, Wav2Vec2EncoderStableLayerNorm, Wav2Vec2FeatureEncoder, BertEncoder)): |
|
module.gradient_checkpointing = value |