metadata
license: apache-2.0
tags:
- generated_from_trainer
datasets:
- conll2003
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: albert-base-v2-finetuned-ner
results:
- task:
name: Token Classification
type: token-classification
dataset:
name: conll2003
type: conll2003
args: conll2003
metrics:
- name: Precision
type: precision
value: 0.9301181102362205
- name: Recall
type: recall
value: 0.9376033513394334
- name: F1
type: f1
value: 0.9338457315399397
- name: Accuracy
type: accuracy
value: 0.9851613086447802
albert-base-v2-finetuned-ner
This model is a fine-tuned version of albert-base-v2 on the conll2003 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0700
- Precision: 0.9301
- Recall: 0.9376
- F1: 0.9338
- Accuracy: 0.9852
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
0.096 | 1.0 | 1756 | 0.0752 | 0.9163 | 0.9201 | 0.9182 | 0.9811 |
0.0481 | 2.0 | 3512 | 0.0761 | 0.9169 | 0.9293 | 0.9231 | 0.9830 |
0.0251 | 3.0 | 5268 | 0.0700 | 0.9301 | 0.9376 | 0.9338 | 0.9852 |
Framework versions
- Transformers 4.14.1
- Pytorch 1.10.1
- Datasets 1.17.0
- Tokenizers 0.10.3