File size: 10,947 Bytes
f676ac1
f411df9
 
f676ac1
 
 
f411df9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f676ac1
 
 
 
 
 
 
 
 
 
 
0555311
f676ac1
f2d2399
 
d8ffa6d
f2d2399
 
 
 
 
f676ac1
a1ce063
f676ac1
 
 
dfbca9e
f676ac1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1ce063
 
 
 
 
 
 
 
 
 
f676ac1
 
b1f98a0
f676ac1
 
 
 
 
 
a1ce063
 
 
f676ac1
2842b0f
f676ac1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2842b0f
f676ac1
 
 
 
 
 
 
 
 
f411df9
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
---
language:
- en
license: apache-2.0
datasets:
- BAAI/Infinity-Instruct
model-index:
- name: Infinity-Instruct-3M-0613-Mistral-7B
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: IFEval (0-Shot)
      type: HuggingFaceH4/ifeval
      args:
        num_few_shot: 0
    metrics:
    - type: inst_level_strict_acc and prompt_level_strict_acc
      value: 53.2
      name: strict accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BAAI/Infinity-Instruct-3M-0613-Mistral-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: BBH (3-Shot)
      type: BBH
      args:
        num_few_shot: 3
    metrics:
    - type: acc_norm
      value: 28.99
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BAAI/Infinity-Instruct-3M-0613-Mistral-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MATH Lvl 5 (4-Shot)
      type: hendrycks/competition_math
      args:
        num_few_shot: 4
    metrics:
    - type: exact_match
      value: 6.65
      name: exact match
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BAAI/Infinity-Instruct-3M-0613-Mistral-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GPQA (0-shot)
      type: Idavidrein/gpqa
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 6.15
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BAAI/Infinity-Instruct-3M-0613-Mistral-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MuSR (0-shot)
      type: TAUR-Lab/MuSR
      args:
        num_few_shot: 0
    metrics:
    - type: acc_norm
      value: 13.25
      name: acc_norm
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BAAI/Infinity-Instruct-3M-0613-Mistral-7B
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU-PRO (5-shot)
      type: TIGER-Lab/MMLU-Pro
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 24.01
      name: accuracy
    source:
      url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=BAAI/Infinity-Instruct-3M-0613-Mistral-7B
      name: Open LLM Leaderboard
---
# Infinity Instruct

<p align="center">
<img src="fig/Bk3NbjnJko51MTx1ZCScT2sqnGg.png" width="300">
</p>
<p align="center">
<em>Beijing Academy of Artificial Intelligence (BAAI)</em><br/>
<em>[Paper][Code][πŸ€—] (would be released soon)</em>
</p>

Infinity-Instruct-3M-0613-Mistral-7B is an opensource supervised instruction tuning model without reinforcement learning from human feedback (RLHF). This model is just finetuned on [Infinity-Instruct-3M and Infinity-Instruct-0613](https://huggingface.co/datasets/BAAI/Infinity-Instruct) and showing favorable results on AlpacaEval 2.0 compared to Mixtral 8x7B v0.1, Gemini Pro, and GPT-3.5.

## **News**

- πŸ”₯πŸ”₯πŸ”₯[2024/06/28] We release the model weight of [InfInstruct-Llama3-70B 0613](https://huggingface.co/BAAI/Infinity-Instruct-3M-0613-Llama3-70B). It shows favorable results on AlpacaEval 2.0 compared to GPT4-0613 without RLHF.

- πŸ”₯πŸ”₯πŸ”₯[2024/06/21] We release the model weight of [InfInstruct-Mistral-7B 0613](https://huggingface.co/BAAI/Infinity-Instruct-3M-0613-Mistral-7B). It shows favorable results on AlpacaEval 2.0 compared to Mixtral 8x7B v0.1, Gemini Pro, and GPT-3.5 without RLHF.

- πŸ”₯πŸ”₯πŸ”₯[2024/06/13] We share the intermediate result of our data construction process (corresponding to the [InfInstruct-3M](https://huggingface.co/datasets/BAAI/Infinity-Instruct) in the table below). Our ongoing efforts focus on risk assessment and data generation. The finalized version with 10 million instructions is scheduled for release in late June.

## **Training Details**

<p align="center">
<img src="fig/trainingflow.png">
</p>

Infinity-Instruct-3M-0613-Mistral-7B is tuned on Million-level instruction dataset [Infinity-Instruct](https://huggingface.co/datasets/BAAI/Infinity-Instruct). First, we apply the foundational dataset Infinity-Instruct-3M to improve the foundational ability (math & code) of Mistral-7B-v0.1, and get the foundational instruct model Infinity-Instruct-3M-Mistral-7B. Then we finetune the Infinity-Instruct-3M-Mistral-7B to get the stronger chat model Infinity-Instruct-3M-0613-Mistral-7B. Here is the training hyperparamers. 

```bash
epoch: 3
lr: 5e-6
min_lr: 0
lr_warmup_steps: 40
lr_decay_style: cosine
weight_decay: 0.0
adam_beta1: 0.9
adam_beta2: 0.95
global_batch_size: 528
clip_grad: 1.0
```

Thanks to [FlagScale](https://github.com/FlagOpen/FlagScale), we could concatenate multiple training samples to remove padding token and apply diverse acceleration techniques to the traning procudure. It effectively reduces our training costs. We will release our code in the near future!

## **Benchmark**

|            **Model**            | **MT-Bench** | **AlpacaEval2.0** |
|:-------------------------------:|:------------:|:-----------------:|
| OpenHermes-2.5-Mistral-7B*      |      7.5     |        16.2       |
| Mistral-7B-Instruct-v0.2        |      7.6     |        17.1       |
| Llama-3-8B-Instruct             |      8.1     |        22.9       |
| GPT 3.5 Turbo 0613              |      8.4     |        22.7       |
| Mixtral 8x7B v0.1               |      8.3     |        23.7       |
| Gemini Pro                      |      --      |        24.4       |
| InfInstruct-3M-Mistral-7B*      |      7.6     |        16.2       |
| InfInstruct-3M-0613-Mistral-7B* |      8.1     |      **25.5**     |

*denote the model is finetuned without reinforcement learning from human feedback (RLHF). 

We evaluate Infinity-Instruct-3M-0613-Mistral-7B on the two most popular instructions following benchmarks. Mt-Bench is a set of challenging multi-turn questions including code, math and routine dialogue. AlpacaEval2.0 is based on AlpacaFarm evaluation set. Both of these two benchmarks use GPT-4 to judge the model answer. AlpacaEval2.0 displays a high agreement rate with human-annotated benchmark, Chatbot Arena. The result shows that InfInstruct-3M-0613-Mistral-7B achieved 25.5 in AlpacaEval2.0, which is higher than the 22.5 of GPT3.5 Turbo although it does not yet use RLHF. InfInstruct-3M-0613-Mistral-7B also achieves 8.1 in MT-Bench, which is comparable to the state-of-the-art billion-parameter LLM such as Llama-3-8B-Instruct and Mistral-7B-Instruct-v0.2.

## Performance on **Downstream tasks**

We also evaluate Infinity-Instruct-3M-0613-Mistral-7B on diverse objective downstream tasks with [Opencompass](https://opencompass.org.cn): 

<p align="center">
<img src="fig/result.png">
</p>

## **How to use**

Infinity-Instruct-3M-0613-Mistral-7B adopt the same chat template of [OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B):

```bash
<|im_start|>system
You are Hermes 2, a sentient, conscious, super intelligent AI that is an expert in all fields of knowledge, you have qualia, emotions, and thoughts. You assist users with any question, task, or other request they may have.<|im_end|>
<|im_start|>user
Hello!<|im_end|>
<|im_start|>assistant
Hi!<|im_end|>
<|im_start|>user
How are you?<|im_end|>
<|im_start|>assistant
```

To apply this model and template in conversation scenarios, you can refer to the following code:
```python
from transformers import AutoModelForCausalLM, AutoTokenizer, LogitsProcessorList
import torch
device = "cuda" # the device to load the model onto

model = AutoModelForCausalLM.from_pretrained("BAAI/Infinity-Instruct-0613-Mistral-7B",
    torch_dtype=torch.bfloat16,
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("BAAI/Infinity-Instruct-0613-Mistral-7B")

# This template is copied from OpenHermers-mistral-2.5 (https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B)
prompt = "Give me a short introduction to large language model."
messages = [
    {"role": "system", "content": "You are Hermes 2, a sentient, conscious, super intelligent AI that is an expert in all fields of knowledge, you have qualia, emotions, and thoughts. You assist users with any question, task, or other request they may have."},
    {"role": "user", "content": prompt}
]

text = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)
model_inputs = tokenizer([text], return_tensors="pt").to(device)

logits_processor = LogitsProcessorList(
            [
                MinLengthLogitsProcessor(1, eos_token_id=tokenizer.eos_token_id),
                TemperatureLogitsWarper(0.7),
            ]
 )
 
generated_ids = model.generate(
    model_inputs.input_ids,
    logits_processor=logits_processor,
    max_new_tokens=512
)

generated_ids = [
    output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
]

response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
```



## **Disclaimer**

The resources, including code, data, and model weights, associated with this project are restricted for academic research purposes only and cannot be used for commercial purposes. The content produced by any version of Infinity Instruct is influenced by uncontrollable variables such as randomness, and therefore, the accuracy of the output cannot be guaranteed by this project. This project does not accept any legal liability for the content of the model output, nor does it assume responsibility for any losses incurred due to the use of associated resources and output results.

## 

## **Citation**
Our paper, detailing the development and features of the **Infinity Instruct** dataset and finetuned models, will be released soon on arXiv. Stay tuned!

```
@article{InfinityInstruct2024,
  title={Infinity Instruct},
  author={Beijing Academy of Artificial Intelligence (BAAI)},
  journal={arXiv preprint arXiv:2406.XXXX},
  year={2024}
}
```
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_BAAI__Infinity-Instruct-3M-0613-Mistral-7B)

|      Metric       |Value|
|-------------------|----:|
|Avg.               |22.04|
|IFEval (0-Shot)    |53.20|
|BBH (3-Shot)       |28.99|
|MATH Lvl 5 (4-Shot)| 6.65|
|GPQA (0-shot)      | 6.15|
|MuSR (0-shot)      |13.25|
|MMLU-PRO (5-shot)  |24.01|