File size: 34,111 Bytes
c72ac0f
 
a2ea80a
 
 
 
 
60f8eb5
a2ea80a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
711afb1
a2ea80a
 
 
 
 
 
 
 
 
 
 
 
 
02affbd
 
c72ac0f
60e9d3d
b97324c
60e9d3d
 
 
 
 
 
 
1ad17b9
60e9d3d
 
 
1c825d2
60e9d3d
 
 
 
a7ec0d5
60e9d3d
 
 
 
af37ed7
a7ec0d5
60e9d3d
af37ed7
a7ec0d5
d27e7d3
 
af37ed7
a7ec0d5
 
bef22ef
bb2cff8
af37ed7
 
 
 
d27e7d3
a7ec0d5
 
56b0029
a7ec0d5
56b0029
1ad17b9
 
56b0029
 
 
 
 
 
 
60e9d3d
56b0029
 
 
 
 
60e9d3d
 
 
 
 
 
56b0029
60e9d3d
af37ed7
56b0029
 
 
60e9d3d
 
 
 
 
 
 
 
 
 
 
 
 
 
56b0029
60e9d3d
56b0029
60e9d3d
 
56b0029
 
 
 
60e9d3d
 
 
 
 
 
 
 
1ad17b9
60e9d3d
af37ed7
 
60e9d3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
56b0029
 
 
 
 
60e9d3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c825d2
 
 
60e9d3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c825d2
60e9d3d
 
 
 
 
 
 
 
 
 
 
 
 
 
1c825d2
60e9d3d
 
 
 
 
 
 
 
 
 
1c825d2
60e9d3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c825d2
 
60e9d3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c825d2
60e9d3d
 
 
 
 
 
 
 
 
1c825d2
60e9d3d
 
1c825d2
60e9d3d
 
 
 
 
 
 
 
 
 
 
 
 
1c825d2
60e9d3d
1c825d2
 
60e9d3d
 
 
 
 
 
 
 
 
5804651
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
60e9d3d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c825d2
60e9d3d
 
 
 
 
 
 
 
 
 
 
 
1c825d2
60e9d3d
 
 
 
 
1c825d2
60e9d3d
 
 
 
 
 
 
 
 
 
 
 
 
1ad17b9
56b0029
60e9d3d
 
 
1c825d2
 
56b0029
 
1c825d2
 
 
 
 
 
 
 
 
 
 
60e9d3d
a2ea80a
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
---
license: mit
language:
- en
- zh
tags:
- mteb
- text-embeddings-inference
model-index:
- name: bge-reranker-base
  results:
  - task:
      type: Reranking
    dataset:
      type: C-MTEB/CMedQAv1-reranking
      name: MTEB CMedQAv1
      config: default
      split: test
      revision: None
    metrics:
    - type: map
      value: 81.27206722525007
    - type: mrr
      value: 84.14238095238095
  - task:
      type: Reranking
    dataset:
      type: C-MTEB/CMedQAv2-reranking
      name: MTEB CMedQAv2
      config: default
      split: test
      revision: None
    metrics:
    - type: map
      value: 84.10369934291236
    - type: mrr
      value: 86.79376984126984
  - task:
      type: Reranking
    dataset:
      type: C-MTEB/Mmarco-reranking
      name: MTEB MMarcoReranking
      config: default
      split: dev
      revision: None
    metrics:
    - type: map
      value: 35.4600511272538
    - type: mrr
      value: 34.60238095238095
  - task:
      type: Reranking
    dataset:
      type: C-MTEB/T2Reranking
      name: MTEB T2Reranking
      config: default
      split: dev
      revision: None
    metrics:
    - type: map
      value: 67.27728847727172
    - type: mrr
      value: 77.1315192743764
pipeline_tag: text-classification
library_name: sentence-transformers
---

**We have updated the [new reranker](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_reranker), supporting larger lengths, more languages, and achieving better performance.**

<h1 align="center">FlagEmbedding</h1>


<h4 align="center">
    <p>
        <a href=#model-list>Model List</a> | 
        <a href=#frequently-asked-questions>FAQ</a> |
        <a href=#usage>Usage</a>  |
        <a href="#evaluation">Evaluation</a> |
        <a href="#train">Train</a> |
        <a href="#citation">Citation</a> |
        <a href="#license">License</a> 
    <p>
</h4>

**More details please refer to our Github: [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding).**


[English](README.md) | [中文](https://github.com/FlagOpen/FlagEmbedding/blob/master/README_zh.md)


FlagEmbedding focuses on retrieval-augmented LLMs, consisting of the following projects currently:

- **Long-Context LLM**: [Activation Beacon](https://github.com/FlagOpen/FlagEmbedding/tree/master/Long_LLM/activation_beacon)
- **Fine-tuning of LM** : [LM-Cocktail](https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail)
- **Embedding Model**: [Visualized-BGE](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/visual), [BGE-M3](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3), [LLM Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder), [BGE Embedding](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/baai_general_embedding)
- **Reranker Model**: [llm rerankers](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_reranker), [BGE Reranker](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker)
- **Benchmark**: [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB)

## News 
- 3/18/2024: Release new [rerankers](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_reranker), built upon powerful M3 and LLM (GEMMA and MiniCPM, not so large actually) backbones, supporitng multi-lingual processing and larger inputs, massive improvements of ranking performances on BEIR, C-MTEB/Retrieval, MIRACL, LlamaIndex Evaluation.
- 3/18/2024: Release [Visualized-BGE](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/visual), equipping BGE with visual capabilities. Visualized-BGE can be utilized to generate embeddings for hybrid image-text data.
- 1/30/2024: Release **BGE-M3**, a new member to BGE model series! M3 stands for **M**ulti-linguality (100+ languages), **M**ulti-granularities (input length up to 8192), **M**ulti-Functionality (unification of dense, lexical, multi-vec/colbert retrieval). 
It is the first embedding model which supports all three retrieval methods, achieving new SOTA on multi-lingual (MIRACL) and cross-lingual (MKQA) benchmarks.
[Technical Report](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/BGE_M3/BGE_M3.pdf) and [Code](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3). :fire:
- 1/9/2024: Release [Activation-Beacon](https://github.com/FlagOpen/FlagEmbedding/tree/master/Long_LLM/activation_beacon), an effective, efficient, compatible, and low-cost (training) method to extend the context length of LLM. [Technical Report](https://arxiv.org/abs/2401.03462) :fire:
- 12/24/2023: Release **LLaRA**, a LLaMA-7B based dense retriever, leading to state-of-the-art performances on MS MARCO and BEIR. Model and code will be open-sourced. Please stay tuned. [Technical Report](https://arxiv.org/abs/2312.15503)
- 11/23/2023: Release [LM-Cocktail](https://github.com/FlagOpen/FlagEmbedding/tree/master/LM_Cocktail), a method to maintain general capabilities during fine-tuning by merging multiple language models. [Technical Report](https://arxiv.org/abs/2311.13534) :fire:  
- 10/12/2023: Release [LLM-Embedder](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/llm_embedder), a unified embedding model to support diverse retrieval augmentation needs for LLMs. [Technical Report](https://arxiv.org/pdf/2310.07554.pdf)
- 09/15/2023: The [technical report](https://arxiv.org/pdf/2309.07597.pdf) of BGE has been released 
- 09/15/2023: The [massive training data](https://data.baai.ac.cn/details/BAAI-MTP) of BGE has been released 
- 09/12/2023: New models: 
    - **New reranker model**: release cross-encoder models `BAAI/bge-reranker-base` and `BAAI/bge-reranker-large`, which are more powerful than embedding model. We recommend to use/fine-tune them to re-rank top-k documents returned by embedding models. 
    - **update embedding model**: release `bge-*-v1.5` embedding model to alleviate the issue of the similarity distribution, and enhance its retrieval ability without instruction.
 

<details>
  <summary>More</summary>
<!-- ### More -->
    
- 09/07/2023: Update [fine-tune code](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md): Add script to mine hard negatives and support adding instruction during fine-tuning. 
- 08/09/2023: BGE Models are integrated into **Langchain**, you can use it like [this](#using-langchain); C-MTEB **leaderboard** is [available](https://huggingface.co/spaces/mteb/leaderboard).  
- 08/05/2023: Release base-scale and small-scale models, **best performance among the models of the same size 🤗**  
- 08/02/2023: Release `bge-large-*`(short for BAAI General Embedding) Models, **rank 1st on MTEB and C-MTEB benchmark!** :tada: :tada:   
- 08/01/2023: We release the [Chinese Massive Text Embedding Benchmark](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB) (**C-MTEB**), consisting of 31 test dataset.  
  
</details>


## Model List

`bge` is short for `BAAI general embedding`.

|              Model              | Language | | Description | query instruction for retrieval [1] |
|:-------------------------------|:--------:| :--------:| :--------:|:--------:|
| [BAAI/bge-m3](https://huggingface.co/BAAI/bge-m3)                   |    Multilingual     |    [Inference](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3#usage) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/BGE_M3)    | Multi-Functionality(dense retrieval, sparse retrieval, multi-vector(colbert)), Multi-Linguality, and Multi-Granularity(8192 tokens) |  |
|  [BAAI/llm-embedder](https://huggingface.co/BAAI/llm-embedder)  |   English | [Inference](./FlagEmbedding/llm_embedder/README.md) [Fine-tune](./FlagEmbedding/llm_embedder/README.md) | a unified embedding model to support diverse retrieval augmentation needs for LLMs | See [README](./FlagEmbedding/llm_embedder/README.md) |
|  [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large)  |   Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] |   |
|  [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) |   Chinese and English | [Inference](#usage-for-reranker) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) | a cross-encoder model which is more accurate but less efficient [2] |   |
|  [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) |   English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: `  |
|  [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) |   English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `Represent this sentence for searching relevant passages: `  |
|  [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) |   English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution  | `Represent this sentence for searching relevant passages: `  |
|  [BAAI/bge-large-zh-v1.5](https://huggingface.co/BAAI/bge-large-zh-v1.5) |   Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:`  |
|  [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) |   Chinese |  [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:`  |
|  [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) |   Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | version 1.5 with more reasonable similarity distribution | `为这个句子生成表示以用于检索相关文章:`  |
|  [BAAI/bge-large-en](https://huggingface.co/BAAI/bge-large-en) |   English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [MTEB](https://huggingface.co/spaces/mteb/leaderboard) leaderboard | `Represent this sentence for searching relevant passages: `  |
|  [BAAI/bge-base-en](https://huggingface.co/BAAI/bge-base-en) |   English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-en` | `Represent this sentence for searching relevant passages: `  |
|  [BAAI/bge-small-en](https://huggingface.co/BAAI/bge-small-en) |   English | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) |a small-scale model but with competitive performance  | `Represent this sentence for searching relevant passages: `  |
|  [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) |   Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | :trophy: rank **1st** in [C-MTEB](https://github.com/FlagOpen/FlagEmbedding/tree/master/C_MTEB) benchmark | `为这个句子生成表示以用于检索相关文章:`  |
|  [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) |   Chinese |  [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a base-scale model but with similar ability to `bge-large-zh` | `为这个句子生成表示以用于检索相关文章:`  |
|  [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) |   Chinese | [Inference](#usage-for-embedding-model) [Fine-tune](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) | a small-scale model but with competitive performance | `为这个句子生成表示以用于检索相关文章:`  |


[1\]: If you need to search the relevant passages to a query, we suggest to add the instruction to the query; in other cases, no instruction is needed, just use the original query directly. In all cases, **no instruction** needs to be added to passages.

[2\]: Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. To balance the accuracy and time cost, cross-encoder is widely used to re-rank top-k documents retrieved by other simple models. 
For examples, use bge embedding model to retrieve top 100 relevant documents, and then use bge reranker to re-rank the top 100 document to get the final top-3 results.

All models have been uploaded to Huggingface Hub, and you can see them at https://huggingface.co/BAAI. 
If you cannot open the Huggingface Hub, you also can download the models at https://model.baai.ac.cn/models .


## Frequently asked questions

<details>
  <summary>1. How to fine-tune bge embedding model?</summary>

  <!-- ### How to fine-tune bge embedding model? -->
Following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune) to prepare data and fine-tune your model. 
Some suggestions:
- Mine hard negatives following this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune#hard-negatives), which can improve the retrieval performance.
- If you pre-train bge on your data, the pre-trained model cannot be directly used to calculate similarity, and it must be fine-tuned with contrastive learning before computing similarity.
- If the accuracy of the fine-tuned model is still not high, it is recommended to use/fine-tune the cross-encoder model (bge-reranker) to re-rank top-k results.
  Hard negatives also are needed to fine-tune reranker. Refer to this [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker) for the fine-tuning for reranker

  
</details>

<details>
  <summary>2. The similarity score between two dissimilar sentences is higher than 0.5</summary>

  <!-- ### The similarity score between two dissimilar sentences is higher than 0.5 -->
**Suggest to use bge v1.5, which alleviates the issue of the similarity distribution.** 

Since we finetune the models by contrastive learning with a temperature of 0.01, 
the similarity distribution of the current BGE model is about in the interval \[0.6, 1\].
So a similarity score greater than 0.5 does not indicate that the two sentences are similar.

For downstream tasks, such as passage retrieval or semantic similarity, 
**what matters is the relative order of the scores, not the absolute value.**
If you need to filter similar sentences based on a similarity threshold, 
please select an appropriate similarity threshold based on the similarity distribution on your data (such as 0.8, 0.85, or even 0.9).

</details>

<details>
  <summary>3. When does the query instruction need to be used</summary>

  <!-- ### When does the query instruction need to be used -->

For the `bge-*-v1.5`, we improve its retrieval ability when not using instruction. 
No instruction only has a slight degradation in retrieval performance compared with using instruction. 
So you can generate embedding without instruction in all cases for convenience.
 
For a retrieval task that uses short queries to find long related documents, 
it is recommended to add instructions for these short queries.
**The best method to decide whether to add instructions for queries is choosing the setting that achieves better performance on your task.**
In all cases, the documents/passages do not need to add the instruction. 

</details>


## Usage 

### Usage for Embedding Model

Here are some examples for using `bge` models with 
[FlagEmbedding](#using-flagembedding), [Sentence-Transformers](#using-sentence-transformers), [Langchain](#using-langchain), or [Huggingface Transformers](#using-huggingface-transformers).

#### Using FlagEmbedding
```
pip install -U FlagEmbedding
```
If it doesn't work for you, you can see [FlagEmbedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md) for more methods to install FlagEmbedding.

```python
from FlagEmbedding import FlagModel
sentences_1 = ["样例数据-1", "样例数据-2"]
sentences_2 = ["样例数据-3", "样例数据-4"]
model = FlagModel('BAAI/bge-large-zh-v1.5', 
                  query_instruction_for_retrieval="为这个句子生成表示以用于检索相关文章:",
                  use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation
embeddings_1 = model.encode(sentences_1)
embeddings_2 = model.encode(sentences_2)
similarity = embeddings_1 @ embeddings_2.T
print(similarity)

# for s2p(short query to long passage) retrieval task, suggest to use encode_queries() which will automatically add the instruction to each query
# corpus in retrieval task can still use encode() or encode_corpus(), since they don't need instruction
queries = ['query_1', 'query_2']
passages = ["样例文档-1", "样例文档-2"]
q_embeddings = model.encode_queries(queries)
p_embeddings = model.encode(passages)
scores = q_embeddings @ p_embeddings.T
```
For the value of the argument `query_instruction_for_retrieval`, see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list). 

By default, FlagModel will use all available GPUs when encoding. Please set `os.environ["CUDA_VISIBLE_DEVICES"]` to select specific GPUs.
You also can set `os.environ["CUDA_VISIBLE_DEVICES"]=""` to make all GPUs unavailable.


#### Using Sentence-Transformers

You can also use the `bge` models with [sentence-transformers](https://www.SBERT.net):

```
pip install -U sentence-transformers
```
```python
from sentence_transformers import SentenceTransformer
sentences_1 = ["样例数据-1", "样例数据-2"]
sentences_2 = ["样例数据-3", "样例数据-4"]
model = SentenceTransformer('BAAI/bge-large-zh-v1.5')
embeddings_1 = model.encode(sentences_1, normalize_embeddings=True)
embeddings_2 = model.encode(sentences_2, normalize_embeddings=True)
similarity = embeddings_1 @ embeddings_2.T
print(similarity)
```
For s2p(short query to long passage) retrieval task, 
each short query should start with an instruction (instructions see [Model List](https://github.com/FlagOpen/FlagEmbedding/tree/master#model-list)). 
But the instruction is not needed for passages.
```python
from sentence_transformers import SentenceTransformer
queries = ['query_1', 'query_2']
passages = ["样例文档-1", "样例文档-2"]
instruction = "为这个句子生成表示以用于检索相关文章:"

model = SentenceTransformer('BAAI/bge-large-zh-v1.5')
q_embeddings = model.encode([instruction+q for q in queries], normalize_embeddings=True)
p_embeddings = model.encode(passages, normalize_embeddings=True)
scores = q_embeddings @ p_embeddings.T
```

#### Using Langchain 

You can use `bge` in langchain like this:
```python
from langchain.embeddings import HuggingFaceBgeEmbeddings
model_name = "BAAI/bge-large-en-v1.5"
model_kwargs = {'device': 'cuda'}
encode_kwargs = {'normalize_embeddings': True} # set True to compute cosine similarity
model = HuggingFaceBgeEmbeddings(
    model_name=model_name,
    model_kwargs=model_kwargs,
    encode_kwargs=encode_kwargs,
    query_instruction="为这个句子生成表示以用于检索相关文章:"
)
model.query_instruction = "为这个句子生成表示以用于检索相关文章:"
```


#### Using HuggingFace Transformers

With the transformers package, you can use the model like this: First, you pass your input through the transformer model, then you select the last hidden state of the first token (i.e., [CLS]) as the sentence embedding.

```python
from transformers import AutoTokenizer, AutoModel
import torch
# Sentences we want sentence embeddings for
sentences = ["样例数据-1", "样例数据-2"]

# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-large-zh-v1.5')
model = AutoModel.from_pretrained('BAAI/bge-large-zh-v1.5')
model.eval()

# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# for s2p(short query to long passage) retrieval task, add an instruction to query (not add instruction for passages)
# encoded_input = tokenizer([instruction + q for q in queries], padding=True, truncation=True, return_tensors='pt')

# Compute token embeddings
with torch.no_grad():
    model_output = model(**encoded_input)
    # Perform pooling. In this case, cls pooling.
    sentence_embeddings = model_output[0][:, 0]
# normalize embeddings
sentence_embeddings = torch.nn.functional.normalize(sentence_embeddings, p=2, dim=1)
print("Sentence embeddings:", sentence_embeddings)
```

### Usage for Reranker

Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. 
You can get a relevance score by inputting query and passage to the reranker. 
The reranker is optimized based cross-entropy loss, so the relevance score is not bounded to a specific range.


#### Using FlagEmbedding
```
pip install -U FlagEmbedding
```

Get relevance scores (higher scores indicate more relevance):
```python
from FlagEmbedding import FlagReranker
reranker = FlagReranker('BAAI/bge-reranker-large', use_fp16=True) # Setting use_fp16 to True speeds up computation with a slight performance degradation

score = reranker.compute_score(['query', 'passage'])
print(score)

scores = reranker.compute_score([['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']])
print(scores)
```


#### Using Huggingface transformers

```python
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-large')
model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-large')
model.eval()

pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]
with torch.no_grad():
    inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512)
    scores = model(**inputs, return_dict=True).logits.view(-1, ).float()
    print(scores)
```

#### Usage reranker with the ONNX files

```python
from optimum.onnxruntime import ORTModelForSequenceClassification  # type: ignore

import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer

tokenizer = AutoTokenizer.from_pretrained('BAAI/bge-reranker-large')
model = AutoModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-base')
model_ort = ORTModelForSequenceClassification.from_pretrained('BAAI/bge-reranker-base', file_name="onnx/model.onnx")

# Sentences we want sentence embeddings for
pairs = [['what is panda?', 'hi'], ['what is panda?', 'The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear or simply panda, is a bear species endemic to China.']]

# Tokenize sentences
encoded_input = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt')

scores_ort = model_ort(**encoded_input, return_dict=True).logits.view(-1, ).float()
# Compute token embeddings
with torch.inference_mode():
    scores = model_ort(**encoded_input, return_dict=True).logits.view(-1, ).float()

# scores and scores_ort are identical
```
#### Usage reranker with infinity

Its also possible to deploy the onnx/torch files with the [infinity_emb](https://github.com/michaelfeil/infinity) pip package.
```python
import asyncio
from infinity_emb import AsyncEmbeddingEngine, EngineArgs

query='what is a panda?'
docs = ['The giant panda (Ailuropoda melanoleuca), sometimes called a panda bear', "Paris is in France."]

engine = AsyncEmbeddingEngine.from_args(
    EngineArgs(model_name_or_path = "BAAI/bge-reranker-base", device="cpu", engine="torch" # or engine="optimum" for onnx
))

async def main(): 
    async with engine:
        ranking, usage = await engine.rerank(query=query, docs=docs)
        print(list(zip(ranking, docs)))
asyncio.run(main())
```

## Evaluation  

`baai-general-embedding` models achieve **state-of-the-art performance on both MTEB and C-MTEB leaderboard!**
For more details and evaluation tools see our [scripts](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md). 

- **MTEB**:   

| Model Name |  Dimension | Sequence Length | Average (56) | Retrieval (15) |Clustering (11) | Pair Classification (3) | Reranking (4) |  STS (10) | Summarization (1) | Classification (12) |
|:----:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|:---:|
| [BAAI/bge-large-en-v1.5](https://huggingface.co/BAAI/bge-large-en-v1.5) | 1024 | 512 |  **64.23** | **54.29** |  46.08 | 87.12 | 60.03 | 83.11 | 31.61 | 75.97 |  
| [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) |  768 | 512 | 63.55 | 53.25 |   45.77 | 86.55 | 58.86 | 82.4 | 31.07 | 75.53 |  
| [BAAI/bge-small-en-v1.5](https://huggingface.co/BAAI/bge-small-en-v1.5) |  384 | 512 | 62.17 |51.68 | 43.82 |  84.92 | 58.36 | 81.59 | 30.12 | 74.14 |  
| [bge-large-en](https://huggingface.co/BAAI/bge-large-en) |  1024 | 512 | 63.98 |  53.9 | 46.98 | 85.8 | 59.48 | 81.56 | 32.06 | 76.21 | 
| [bge-base-en](https://huggingface.co/BAAI/bge-base-en) |  768 | 512 |  63.36 | 53.0 | 46.32 | 85.86 | 58.7 | 81.84 | 29.27 | 75.27 | 
| [gte-large](https://huggingface.co/thenlper/gte-large) |  1024 | 512 | 63.13 | 52.22 | 46.84 | 85.00 | 59.13 | 83.35 | 31.66 | 73.33 |
| [gte-base](https://huggingface.co/thenlper/gte-base) 	|  768 | 512 | 62.39 | 51.14 | 46.2 | 84.57 | 58.61 | 82.3 | 31.17 | 73.01 |
| [e5-large-v2](https://huggingface.co/intfloat/e5-large-v2) |  1024| 512 | 62.25 | 50.56 | 44.49 | 86.03 | 56.61 | 82.05 | 30.19 | 75.24 |
| [bge-small-en](https://huggingface.co/BAAI/bge-small-en) |  384 | 512 | 62.11 |  51.82 | 44.31 | 83.78 | 57.97 | 80.72 | 30.53 | 74.37 |  
| [instructor-xl](https://huggingface.co/hkunlp/instructor-xl) |  768 | 512 | 61.79 | 49.26 | 44.74 | 86.62 | 57.29 | 83.06 | 32.32 | 61.79 |
| [e5-base-v2](https://huggingface.co/intfloat/e5-base-v2) |  768 | 512 | 61.5 | 50.29 | 43.80 | 85.73 | 55.91 | 81.05 | 30.28 | 73.84 |
| [gte-small](https://huggingface.co/thenlper/gte-small) |  384 | 512 | 61.36 | 49.46 | 44.89 | 83.54 | 57.7 | 82.07 | 30.42 | 72.31 |
| [text-embedding-ada-002](https://platform.openai.com/docs/guides/embeddings) | 1536 | 8192 | 60.99 | 49.25 | 45.9 | 84.89 | 56.32 | 80.97 | 30.8 | 70.93 |
| [e5-small-v2](https://huggingface.co/intfloat/e5-base-v2) | 384 | 512 | 59.93 | 49.04 | 39.92 | 84.67 | 54.32 | 80.39 | 31.16 | 72.94 |
| [sentence-t5-xxl](https://huggingface.co/sentence-transformers/sentence-t5-xxl) |  768 | 512 | 59.51 | 42.24 | 43.72 | 85.06 | 56.42 | 82.63 | 30.08 | 73.42 |
| [all-mpnet-base-v2](https://huggingface.co/sentence-transformers/all-mpnet-base-v2) 	|  768 | 514 	| 57.78 | 43.81 | 43.69 | 83.04 | 59.36 | 80.28 | 27.49 | 65.07 |
| [sgpt-bloom-7b1-msmarco](https://huggingface.co/bigscience/sgpt-bloom-7b1-msmarco) 	|  4096 | 2048 | 57.59 | 48.22 | 38.93 | 81.9 | 55.65 | 77.74 | 33.6 | 66.19 |



- **C-MTEB**:  
We create the benchmark C-MTEB for Chinese text embedding which consists of 31 datasets from 6 tasks. 
Please refer to [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/README.md) for a detailed introduction.
 
| Model | Embedding dimension | Avg | Retrieval | STS | PairClassification | Classification | Reranking | Clustering |
|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|
| [**BAAI/bge-large-zh-v1.5**](https://huggingface.co/BAAI/bge-large-zh-v1.5) | 1024 |  **64.53** | 70.46 | 56.25 | 81.6 | 69.13 | 65.84 | 48.99 |  
| [BAAI/bge-base-zh-v1.5](https://huggingface.co/BAAI/bge-base-zh-v1.5) | 768 |  63.13 | 69.49 | 53.72 | 79.75 | 68.07 | 65.39 | 47.53 |  
| [BAAI/bge-small-zh-v1.5](https://huggingface.co/BAAI/bge-small-zh-v1.5) | 512 | 57.82 | 61.77 | 49.11 | 70.41 | 63.96 | 60.92 | 44.18 |   
| [BAAI/bge-large-zh](https://huggingface.co/BAAI/bge-large-zh) | 1024 | 64.20 | 71.53 | 54.98 | 78.94 | 68.32 | 65.11 | 48.39 |
| [bge-large-zh-noinstruct](https://huggingface.co/BAAI/bge-large-zh-noinstruct) | 1024 | 63.53 | 70.55 | 53 | 76.77 | 68.58 | 64.91 | 50.01 |
| [BAAI/bge-base-zh](https://huggingface.co/BAAI/bge-base-zh) | 768 | 62.96 | 69.53 | 54.12 | 77.5 | 67.07 | 64.91 | 47.63 |
| [multilingual-e5-large](https://huggingface.co/intfloat/multilingual-e5-large) | 1024 | 58.79 | 63.66 | 48.44 | 69.89 | 67.34 | 56.00 | 48.23 |
| [BAAI/bge-small-zh](https://huggingface.co/BAAI/bge-small-zh) | 512 | 58.27 |  63.07 | 49.45 | 70.35 | 63.64 | 61.48 | 45.09 |
| [m3e-base](https://huggingface.co/moka-ai/m3e-base) | 768 | 57.10 | 56.91 | 50.47 | 63.99 | 67.52 | 59.34 | 47.68 |
| [m3e-large](https://huggingface.co/moka-ai/m3e-large) | 1024 |  57.05 | 54.75 | 50.42 | 64.3 | 68.2 | 59.66 | 48.88 |
| [multilingual-e5-base](https://huggingface.co/intfloat/multilingual-e5-base) | 768 | 55.48 | 61.63 | 46.49 | 67.07 | 65.35 | 54.35 | 40.68 |
| [multilingual-e5-small](https://huggingface.co/intfloat/multilingual-e5-small) | 384 | 55.38 | 59.95 | 45.27 | 66.45 | 65.85 | 53.86 | 45.26 |
| [text-embedding-ada-002(OpenAI)](https://platform.openai.com/docs/guides/embeddings/what-are-embeddings) | 1536 |  53.02 | 52.0 | 43.35 | 69.56 | 64.31 | 54.28 | 45.68 |
| [luotuo](https://huggingface.co/silk-road/luotuo-bert-medium) | 1024 | 49.37 |  44.4 | 42.78 | 66.62 | 61 | 49.25 | 44.39 |
| [text2vec-base](https://huggingface.co/shibing624/text2vec-base-chinese) | 768 |  47.63 | 38.79 | 43.41 | 67.41 | 62.19 | 49.45 | 37.66 |
| [text2vec-large](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 1024 | 47.36 | 41.94 | 44.97 | 70.86 | 60.66 | 49.16 | 30.02 |


- **Reranking**:
See [C_MTEB](https://github.com/FlagOpen/FlagEmbedding/blob/master/C_MTEB/) for evaluation script.

| Model | T2Reranking | T2RerankingZh2En\* | T2RerankingEn2Zh\* | MMarcoReranking | CMedQAv1 | CMedQAv2 | Avg |  
|:-------------------------------|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------:|  
| text2vec-base-multilingual | 64.66 | 62.94 | 62.51 | 14.37 | 48.46 | 48.6 | 50.26 |  
| multilingual-e5-small | 65.62 | 60.94 | 56.41 | 29.91 | 67.26 | 66.54 | 57.78 |  
| multilingual-e5-large | 64.55 | 61.61 | 54.28 | 28.6 | 67.42 | 67.92 | 57.4 |  
| multilingual-e5-base | 64.21 | 62.13 | 54.68 | 29.5 | 66.23 | 66.98 | 57.29 |  
| m3e-base | 66.03 | 62.74 | 56.07 | 17.51 | 77.05 | 76.76 | 59.36 |  
| m3e-large | 66.13 | 62.72 | 56.1 | 16.46 | 77.76 | 78.27 | 59.57 |  
| bge-base-zh-v1.5 | 66.49 | 63.25 | 57.02 | 29.74 | 80.47 | 84.88 | 63.64 |  
| bge-large-zh-v1.5 | 65.74 | 63.39 | 57.03 | 28.74 | 83.45 | 85.44 | 63.97 |  
| [BAAI/bge-reranker-base](https://huggingface.co/BAAI/bge-reranker-base) | 67.28 | 63.95 | 60.45 | 35.46 | 81.26 | 84.1 | 65.42 |  
| [BAAI/bge-reranker-large](https://huggingface.co/BAAI/bge-reranker-large) | 67.6 | 64.03 | 61.44 | 37.16 | 82.15 | 84.18 | 66.09 |  

\* : T2RerankingZh2En and T2RerankingEn2Zh are cross-language retrieval tasks

## Train

### BAAI Embedding 

We pre-train the models using [retromae](https://github.com/staoxiao/RetroMAE) and train them on large-scale pairs data using contrastive learning. 
**You can fine-tune the embedding model on your data following our [examples](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/finetune).**
We also provide a [pre-train example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/pretrain).
Note that the goal of pre-training is to reconstruct the text, and the pre-trained model cannot be used for similarity calculation directly, it needs to be fine-tuned.
More training details for bge see [baai_general_embedding](https://github.com/FlagOpen/FlagEmbedding/blob/master/FlagEmbedding/baai_general_embedding/README.md).



### BGE Reranker

Cross-encoder will perform full-attention over the input pair, 
which is more accurate than embedding model (i.e., bi-encoder) but more time-consuming than embedding model.
Therefore, it can be used to re-rank the top-k documents returned by embedding model.
We train the cross-encoder on a multilingual pair data, 
The data format is the same as embedding model, so you can fine-tune it easily following our [example](https://github.com/FlagOpen/FlagEmbedding/tree/master/examples/reranker). 
More details please refer to [./FlagEmbedding/reranker/README.md](https://github.com/FlagOpen/FlagEmbedding/tree/master/FlagEmbedding/reranker)



## Citation

If you find this repository useful, please consider giving a star :star: and citation

```
@misc{bge_embedding,
      title={C-Pack: Packaged Resources To Advance General Chinese Embedding}, 
      author={Shitao Xiao and Zheng Liu and Peitian Zhang and Niklas Muennighoff},
      year={2023},
      eprint={2309.07597},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}
```

## License
FlagEmbedding is licensed under the [MIT License](https://github.com/FlagOpen/FlagEmbedding/blob/master/LICENSE). The released models can be used for commercial purposes free of charge.