BramVanroy's picture
Update README.md
f6bf5f5
metadata
base_model: facebook/mbart-large-cc25
language:
  - nl
  - es

ES and NL to AMR parsing

This model is a fine-tuned version of facebook/mbart-large-cc25 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6542
  • Smatch Precision: 73.41
  • Smatch Recall: 76.04
  • Smatch Fscore: 74.7
  • Smatch Unparsable: 0
  • Percent Not Recoverable: 0.2613

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 25

Training results

Training Loss Epoch Step Validation Loss Smatch Precision Smatch Recall Smatch Fscore Smatch Unparsable Percent Not Recoverable
0.2675 1.0 6954 1.3790 23.26 65.74 34.36 0 0.0
0.1137 2.0 13908 1.0480 32.79 71.81 45.02 0 0.0
0.1606 3.0 20862 0.8573 38.99 72.53 50.72 0 0.0581
0.0923 4.0 27817 0.7614 40.4 75.22 52.56 0 0.0290
0.0292 5.0 34771 0.7935 46.44 75.63 57.54 0 0.0290
0.0106 6.0 41725 0.7326 49.54 75.8 59.92 0 0.0
0.0054 7.0 48679 0.6385 51.35 76.11 61.33 0 0.0290
0.048 8.0 55634 0.6489 53.03 76.79 62.74 0 0.0581
0.0334 9.0 62588 0.6128 59.05 77.3 66.95 0 0.0581
0.0393 10.0 69542 0.6242 57.91 77.02 66.11 0 0.0871
0.0251 11.0 76496 0.6417 58.46 77.31 66.58 0 0.1742
0.0035 12.0 83451 0.6271 62.28 76.99 68.86 0 0.0581
0.0228 13.0 90405 0.6685 62.47 76.97 68.97 0 0.1452
0.0119 14.0 97359 0.6414 63.12 77.23 69.47 0 0.1161
0.0066 15.0 104313 0.6515 65.63 77.02 70.87 0 0.0871
0.0025 16.0 111268 0.6467 67.05 77.35 71.83 0 0.0871
0.0024 17.0 118222 0.6657 65.47 77.13 70.82 0 0.0581
0.0223 18.0 125176 0.6754 67.56 77.21 72.06 0 0.1452
0.034 19.0 132130 0.6569 68.47 76.97 72.47 0 0.1161
0.007 20.0 139085 0.6734 69.86 77.17 73.34 0 0.2033
0.0224 21.0 146039 0.6544 70.95 76.72 73.72 0 0.1742
0.005 22.0 152993 0.6619 72.18 76.83 74.43 0 0.1742
0.0055 23.0 159947 0.6683 72.21 76.42 74.26 0 0.2323
0.0 24.0 166902 0.6585 72.8 76.3 74.51 0 0.2033
0.0693 25.0 173850 0.6542 73.41 76.04 74.7 0 0.2613

Framework versions

  • Transformers 4.34.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.2
  • Tokenizers 0.13.3