OpenELM-1_1B-DPO-full-max-6-reward
This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.8090
- Rewards/chosen: -15.25
- Rewards/rejected: -16.875
- Rewards/accuracies: 0.5859
- Rewards/margins: 1.6719
- Logps/rejected: -1984.0
- Logps/chosen: -1840.0
- Logits/rejected: 0.0815
- Logits/chosen: -1.9688
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
0.5933 | 0.1047 | 100 | 0.6757 | -1.1562 | -1.3125 | 0.5801 | 0.1611 | -420.0 | -434.0 | -11.5625 | -11.875 |
0.5649 | 0.2094 | 200 | 0.6957 | -2.125 | -2.375 | 0.6074 | 0.2451 | -524.0 | -532.0 | -10.125 | -10.5625 |
0.5247 | 0.3141 | 300 | 0.7605 | -4.4688 | -4.9688 | 0.6094 | 0.4980 | -784.0 | -764.0 | -7.6875 | -8.4375 |
0.5128 | 0.4188 | 400 | 0.7887 | -3.7188 | -4.25 | 0.5977 | 0.5195 | -712.0 | -688.0 | -13.25 | -13.875 |
0.5048 | 0.5236 | 500 | 0.7560 | -4.25 | -4.8438 | 0.6309 | 0.6055 | -772.0 | -744.0 | -10.6875 | -11.8125 |
0.4935 | 0.6283 | 600 | 0.7500 | -4.6562 | -5.0938 | 0.5781 | 0.4473 | -800.0 | -784.0 | -14.1875 | -14.875 |
0.4879 | 0.7330 | 700 | 0.7732 | -5.0938 | -5.7812 | 0.6230 | 0.6797 | -868.0 | -828.0 | -12.5 | -13.8125 |
0.4911 | 0.8377 | 800 | 0.7706 | -5.0 | -5.625 | 0.625 | 0.6406 | -852.0 | -816.0 | -13.375 | -14.25 |
0.4586 | 0.9424 | 900 | 0.9273 | -7.5312 | -8.3125 | 0.6113 | 0.7773 | -1120.0 | -1072.0 | -9.0 | -10.6875 |
0.1423 | 1.0471 | 1000 | 1.1068 | -8.75 | -9.6875 | 0.5879 | 0.9609 | -1256.0 | -1192.0 | -7.0625 | -9.125 |
0.1457 | 1.1518 | 1100 | 1.1011 | -8.125 | -9.0625 | 0.5801 | 0.9141 | -1192.0 | -1128.0 | -10.75 | -12.375 |
0.1344 | 1.2565 | 1200 | 1.0089 | -8.375 | -9.375 | 0.5996 | 0.9883 | -1224.0 | -1152.0 | -5.3438 | -7.4062 |
0.1369 | 1.3613 | 1300 | 1.0540 | -9.4375 | -10.625 | 0.6016 | 1.1797 | -1352.0 | -1264.0 | -5.5312 | -7.5938 |
0.1225 | 1.4660 | 1400 | 1.1049 | -9.5625 | -10.625 | 0.6035 | 1.0859 | -1352.0 | -1272.0 | -5.5938 | -7.375 |
0.1276 | 1.5707 | 1500 | 1.1785 | -11.0 | -12.25 | 0.6074 | 1.2344 | -1512.0 | -1416.0 | -1.0625 | -3.0625 |
0.1177 | 1.6754 | 1600 | 1.1486 | -9.5 | -10.75 | 0.6094 | 1.25 | -1368.0 | -1272.0 | -3.8594 | -5.9062 |
0.1007 | 1.7801 | 1700 | 1.1275 | -9.5 | -10.5625 | 0.5840 | 1.0625 | -1344.0 | -1272.0 | -7.75 | -9.3125 |
0.1186 | 1.8848 | 1800 | 1.1385 | -9.9375 | -11.0 | 0.5703 | 1.0547 | -1392.0 | -1312.0 | -5.7188 | -7.4375 |
0.1098 | 1.9895 | 1900 | 1.2803 | -11.9375 | -13.25 | 0.5879 | 1.3359 | -1616.0 | -1512.0 | -2.7031 | -4.6875 |
0.0179 | 2.0942 | 2000 | 1.7014 | -14.5 | -16.0 | 0.5820 | 1.5938 | -1896.0 | -1768.0 | -1.5078 | -3.6406 |
0.0165 | 2.1990 | 2100 | 1.7262 | -14.4375 | -16.125 | 0.5801 | 1.6797 | -1904.0 | -1760.0 | -1.9531 | -4.0625 |
0.0158 | 2.3037 | 2200 | 1.7524 | -14.25 | -15.8125 | 0.5762 | 1.5703 | -1872.0 | -1744.0 | -1.2344 | -3.3594 |
0.0199 | 2.4084 | 2300 | 1.7305 | -14.4375 | -15.9375 | 0.5840 | 1.5391 | -1888.0 | -1760.0 | -0.6211 | -2.6875 |
0.0172 | 2.5131 | 2400 | 1.7391 | -14.5625 | -16.125 | 0.5820 | 1.6016 | -1904.0 | -1776.0 | -0.3164 | -2.3906 |
0.0162 | 2.6178 | 2500 | 1.8456 | -15.5 | -17.25 | 0.5898 | 1.7031 | -2008.0 | -1872.0 | 0.1270 | -1.9219 |
0.0128 | 2.7225 | 2600 | 1.7974 | -15.0625 | -16.75 | 0.5879 | 1.6797 | -1960.0 | -1824.0 | -0.1289 | -2.2031 |
0.0168 | 2.8272 | 2700 | 1.8012 | -15.1875 | -16.875 | 0.5879 | 1.6719 | -1976.0 | -1840.0 | 0.0459 | -2.0156 |
0.0171 | 2.9319 | 2800 | 1.8090 | -15.25 | -16.875 | 0.5859 | 1.6719 | -1984.0 | -1840.0 | 0.0815 | -1.9688 |
Framework versions
- Transformers 4.45.1
- Pytorch 2.3.0
- Datasets 3.0.1
- Tokenizers 0.20.0
- Downloads last month
- 3
Inference API (serverless) does not yet support model repos that contain custom code.