OpenELM-1_1B-DPO-full-max-reward-least-similar
This model was trained from scratch on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 1.2775
- Rewards/chosen: -5.2812
- Rewards/rejected: -5.5938
- Rewards/accuracies: 0.5039
- Rewards/margins: 0.3301
- Logps/rejected: -848.0
- Logps/chosen: -844.0
- Logits/rejected: -13.25
- Logits/chosen: -14.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 2
- total_train_batch_size: 64
- total_eval_batch_size: 64
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|
0.0747 | 0.1047 | 100 | 0.7319 | -1.2344 | -1.3906 | 0.5195 | 0.1494 | -428.0 | -442.0 | -9.875 | -10.1875 |
0.0623 | 0.2094 | 200 | 0.7326 | -1.1641 | -1.3125 | 0.5137 | 0.1494 | -420.0 | -434.0 | -13.3125 | -13.625 |
0.0804 | 0.3141 | 300 | 1.1385 | -4.375 | -4.5938 | 0.4863 | 0.2275 | -748.0 | -756.0 | -10.9375 | -11.3125 |
0.1502 | 0.4188 | 400 | 0.9801 | -3.2031 | -3.3125 | 0.4844 | 0.0991 | -620.0 | -640.0 | -11.375 | -11.9375 |
0.0464 | 0.5236 | 500 | 0.9622 | -2.6875 | -2.7969 | 0.4805 | 0.1074 | -568.0 | -588.0 | -13.125 | -13.5625 |
0.0636 | 0.6283 | 600 | 1.0378 | -2.4062 | -2.4375 | 0.4727 | 0.0264 | -532.0 | -560.0 | -13.6875 | -14.0 |
0.0638 | 0.7330 | 700 | 0.8978 | -2.1562 | -2.1562 | 0.5039 | 0.0037 | -504.0 | -532.0 | -13.6875 | -13.875 |
0.0552 | 0.8377 | 800 | 0.9712 | -3.4375 | -3.4688 | 0.4980 | 0.0332 | -636.0 | -664.0 | -13.0625 | -13.5625 |
0.0459 | 0.9424 | 900 | 1.0447 | -4.7188 | -4.9688 | 0.5117 | 0.2490 | -784.0 | -788.0 | -12.625 | -13.0 |
0.0041 | 1.0471 | 1000 | 1.3027 | -4.9688 | -5.1875 | 0.4785 | 0.2383 | -808.0 | -816.0 | -14.8125 | -14.9375 |
0.0032 | 1.1518 | 1100 | 1.1521 | -4.5 | -4.625 | 0.5098 | 0.1455 | -752.0 | -768.0 | -15.0 | -15.3125 |
0.0068 | 1.2565 | 1200 | 0.9612 | -4.5 | -4.75 | 0.5312 | 0.2617 | -764.0 | -768.0 | -8.5 | -9.625 |
0.0038 | 1.3613 | 1300 | 1.0891 | -3.6094 | -3.8438 | 0.5332 | 0.2471 | -672.0 | -680.0 | -16.75 | -16.75 |
0.0036 | 1.4660 | 1400 | 1.0725 | -3.6875 | -3.875 | 0.5254 | 0.1885 | -676.0 | -688.0 | -15.6875 | -15.75 |
0.0067 | 1.5707 | 1500 | 1.0607 | -3.9531 | -4.1562 | 0.5117 | 0.2158 | -704.0 | -712.0 | -14.625 | -14.875 |
0.0068 | 1.6754 | 1600 | 1.1896 | -4.5938 | -4.9062 | 0.5137 | 0.3164 | -780.0 | -776.0 | -15.1875 | -15.5 |
0.0042 | 1.7801 | 1700 | 1.1288 | -4.4062 | -4.6562 | 0.5273 | 0.2676 | -756.0 | -760.0 | -15.375 | -15.875 |
0.0003 | 1.8848 | 1800 | 1.3009 | -5.3125 | -5.625 | 0.5059 | 0.3203 | -852.0 | -848.0 | -14.6875 | -15.1875 |
0.002 | 1.9895 | 1900 | 1.2142 | -4.8438 | -5.125 | 0.5156 | 0.2871 | -800.0 | -804.0 | -13.625 | -14.3125 |
0.0004 | 2.0942 | 2000 | 1.2300 | -4.8438 | -5.1562 | 0.5137 | 0.2969 | -804.0 | -804.0 | -13.4375 | -14.125 |
0.0148 | 2.1990 | 2100 | 1.2569 | -5.0625 | -5.375 | 0.5137 | 0.3223 | -828.0 | -824.0 | -13.25 | -13.9375 |
0.0009 | 2.3037 | 2200 | 1.2545 | -5.3125 | -5.625 | 0.5059 | 0.3184 | -852.0 | -848.0 | -12.8125 | -13.5625 |
0.0006 | 2.4084 | 2300 | 1.2550 | -5.25 | -5.5312 | 0.5098 | 0.3008 | -840.0 | -840.0 | -12.9375 | -13.6875 |
0.0002 | 2.5131 | 2400 | 1.2758 | -5.2812 | -5.625 | 0.5098 | 0.3223 | -848.0 | -848.0 | -13.1875 | -13.875 |
0.0004 | 2.6178 | 2500 | 1.2774 | -5.2812 | -5.5938 | 0.5039 | 0.3242 | -848.0 | -844.0 | -13.1875 | -13.875 |
0.0002 | 2.7225 | 2600 | 1.2790 | -5.2812 | -5.5938 | 0.5039 | 0.3281 | -848.0 | -844.0 | -13.25 | -13.9375 |
0.0003 | 2.8272 | 2700 | 1.2763 | -5.2812 | -5.5938 | 0.5020 | 0.3320 | -848.0 | -844.0 | -13.25 | -13.9375 |
0.0002 | 2.9319 | 2800 | 1.2775 | -5.2812 | -5.5938 | 0.5039 | 0.3301 | -848.0 | -844.0 | -13.25 | -14.0 |
Framework versions
- Transformers 4.45.1
- Pytorch 2.3.0
- Datasets 3.0.1
- Tokenizers 0.20.0
- Downloads last month
- 3
Inference API (serverless) does not yet support model repos that contain custom code.