May or may not be deleted wizardcoder-33b-v1.1.

Prompt format

### Instruction:
{instruction}

### Response:

Original model card: WizardLM's Wizardcoder 33B V1.1

WizardCoder: Empowering Code Large Language Models with Evol-Instruct

🏠 Home Page

🤗 HF Repo •🐱 Github Repo • 🐦 Twitter

📃 [WizardLM] • 📃 [WizardCoder] • 📃 [WizardMath]

👋 Join our Discord

News

[2023/01/04] 🔥 We released WizardCoder-33B-V1.1 trained from deepseek-coder-33b-base, the SOTA OSS Code LLM on EvalPlus Leaderboard, achieves 79.9 pass@1 on HumanEval, 73.2 pass@1 on HumanEval-Plus, 78.9 pass@1 on MBPP, and 66.9 pass@1 on MBPP-Plus.

[2023/01/04] 🔥 WizardCoder-33B-V1.1 outperforms ChatGPT 3.5, Gemini Pro, and DeepSeek-Coder-33B-instruct on HumanEval and HumanEval-Plus pass@1.

[2023/01/04] 🔥 WizardCoder-33B-V1.1 is comparable with ChatGPT 3.5, and surpasses Gemini Pro on MBPP and MBPP-Plus pass@1.

Model Checkpoint Paper HumanEval HumanEval+ MBPP MBPP+ License
GPT-4-Turbo (Nov 2023) - - 85.4 81.7 83.0 70.7 -
GPT-4 (May 2023) - - 88.4 76.8 - - -
GPT-3.5-Turbo (Nov 2023) - - 72.6 65.9 81.7 69.4 -
Gemini Pro - - 63.4 55.5 72.9 57.9 -
DeepSeek-Coder-33B-instruct - - 78.7 72.6 78.7 66.7 -
WizardCoder-33B-V1.1 🤗 HF Link 📃 [WizardCoder] 79.9 73.2 78.9 66.9 MSFTResearch
WizardCoder-Python-34B-V1.0 🤗 HF Link 📃 [WizardCoder] 73.2 64.6 73.2 59.9 Llama2
WizardCoder-15B-V1.0 🤗 HF Link 📃 [WizardCoder] 59.8 52.4 -- -- OpenRAIL-M
WizardCoder-Python-13B-V1.0 🤗 HF Link 📃 [WizardCoder] 64.0 -- -- -- Llama2
WizardCoder-Python-7B-V1.0 🤗 HF Link 📃 [WizardCoder] 55.5 -- -- -- Llama2
WizardCoder-3B-V1.0 🤗 HF Link 📃 [WizardCoder] 34.8 -- -- -- OpenRAIL-M
WizardCoder-1B-V1.0 🤗 HF Link 📃 [WizardCoder] 23.8 -- -- -- OpenRAIL-M

❗ Data Contamination Check:

Before model training, we carefully and rigorously checked all the training data, and used multiple deduplication methods to verify and prevent data leakage on HumanEval and MBPP test set.

🔥 ❗Note for model system prompts usage:

Please use the same systems prompts strictly with us, and we do not guarantee the accuracy of the quantified versions.

Default version:

"Below is an instruction that describes a task. Write a response that appropriately completes the request.\n\n### Instruction:\n{instruction}\n\n### Response:"

How to Reproduce the Performance of WizardCoder-33B-V1.1

We provide all codes here.

We also provide all generated results.

transformers==4.36.2
vllm==0.2.5

(1) HumanEval and HumanEval-Plus

  • Step 1

Code Generation (w/o accelerate)

model="WizardLM/WizardCoder-33B-V1.1"
temp=0.0
max_len=2048
pred_num=1
num_seqs_per_iter=1

output_path=preds/T${temp}_N${pred_num}_WizardCoder-33B-V1.1_Greedy_Decode

mkdir -p ${output_path}
echo 'Output path: '$output_path
echo 'Model to eval: '$model

# 164 problems, 21 per GPU if GPU=8
index=0
gpu_num=8
for ((i = 0; i < $gpu_num; i++)); do
  start_index=$((i * 21))
  end_index=$(((i + 1) * 21))

  gpu=$((i))
  echo 'Running process #' ${i} 'from' $start_index 'to' $end_index 'on GPU' ${gpu}
  ((index++))
  (
    CUDA_VISIBLE_DEVICES=$gpu python humaneval_gen.py --model ${model} \
      --start_index ${start_index} --end_index ${end_index} --temperature ${temp} \
      --num_seqs_per_iter ${num_seqs_per_iter} --N ${pred_num} --max_len ${max_len} --output_path ${output_path} --greedy_decode
  ) &
  if (($index % $gpu_num == 0)); then wait; fi
done

Code Generation (w/ vllm accelerate)

model="WizardLM/WizardCoder-33B-V1.1"
temp=0.0
max_len=2048
pred_num=1
num_seqs_per_iter=1

output_path=preds/T${temp}_N${pred_num}_WizardCoder-33B-V1.1_Greedy_Decode_vllm

mkdir -p ${output_path}
echo 'Output path: '$output_path
echo 'Model to eval: '$model

CUDA_VISIBLE_DEVICES=0,1,2,3 python humaneval_gen_vllm.py --model ${model} \
    --start_index 0 --end_index 164 --temperature ${temp} \
    --num_seqs_per_iter ${num_seqs_per_iter} --N ${pred_num} --max_len ${max_len} --output_path ${output_path} --num_gpus 4 --overwrite
  • Step 2: Get the score

Install Eval-Plus benchmark.

git clone https://github.com/evalplus/evalplus.git
cd evalplus
export PYTHONPATH=$PYTHONPATH:$(pwd)
pip install -r requirements.txt

Get HumanEval and HumanEval-Plus scores.

output_path=preds/T0.0_N1_WizardCoder-33B-V1.1_Greedy_Decode

echo 'Output path: '$output_path
python process_humaneval.py --path ${output_path} --out_path ${output_path}.jsonl --add_prompt

evalplus.evaluate --dataset humaneval --samples ${output_path}.jsonl

(2) MBPP and MBPP-Plus

The preprocessed questions are provided in mbppplus.json.

  • Step 1

Code Generation (w/o accelerate)

model="WizardLM/WizardCoder-33B-V1.1"
temp=0.0
max_len=2048
pred_num=1
num_seqs_per_iter=1

output_path=preds/MBPP_T${temp}_N${pred_num}_WizardCoder-33B-V1.1_Greedy_Decode

mkdir -p ${output_path}
echo 'Output path: '$output_path
echo 'Model to eval: '$model

# 399 problems, 50 per GPU if GPU=8
index=0
gpu_num=8
for ((i = 0; i < $gpu_num; i++)); do
  start_index=$((i * 50))
  end_index=$(((i + 1) * 50))

  gpu=$((i))
  echo 'Running process #' ${i} 'from' $start_index 'to' $end_index 'on GPU' ${gpu}
  ((index++))
  (
    CUDA_VISIBLE_DEVICES=$gpu python mbppplus_gen.py --model ${model} \
      --start_index ${start_index} --end_index ${end_index} --temperature ${temp} \
      --num_seqs_per_iter ${num_seqs_per_iter} --N ${pred_num} --max_len ${max_len} --output_path ${output_path} --mbpp_path "mbppplus.json" --greedy_decode
  ) &
  if (($index % $gpu_num == 0)); then wait; fi
done

Code Generation (w/ vllm accelerate)

model="WizardLM/WizardCoder-33B-V1.1"
temp=0.0
max_len=2048
pred_num=1
num_seqs_per_iter=1

output_path=preds/MBPP_T${temp}_N${pred_num}_WizardCoder-33B-V1.1_Greedy_Decode_vllm

mkdir -p ${output_path}
echo 'Output path: '$output_path
echo 'Model to eval: '$model

CUDA_VISIBLE_DEVICES=0,1,2,3 python mbppplus_gen_vllm.py --model ${model} \
    --start_index ${start_index} --end_index ${end_index} --temperature ${temp} \
    --num_seqs_per_iter ${num_seqs_per_iter} --N ${pred_num} --max_len ${max_len} --output_path ${output_path} --mbpp_path "mbppplus.json" --num_gpus 4
  • Step 2: Get the score

Install Eval-Plus benchmark.

git clone https://github.com/evalplus/evalplus.git
cd evalplus
export PYTHONPATH=$PYTHONPATH:$(pwd)
pip install -r requirements.txt

Get HumanEval and HumanEval-Plus scores.

output_path=preds/MBPP_T0.0_N1_WizardCoder-33B-V1.1_Greedy_Decode

echo 'Output path: '$output_path
python mbppplus_process_preds.py --path ${output_path} --out_path ${output_path}.jsonl --add_prompt

evalplus.evaluate --dataset mbpp --samples ${output_path}.jsonl

Citation

Please cite the repo if you use the data, method or code in this repo.

@article{luo2023wizardcoder,
  title={WizardCoder: Empowering Code Large Language Models with Evol-Instruct},
  author={Luo, Ziyang and Xu, Can and Zhao, Pu and Sun, Qingfeng and Geng, Xiubo and Hu, Wenxiang and Tao, Chongyang and Ma, Jing and Lin, Qingwei and Jiang, Daxin},
  journal={arXiv preprint arXiv:2306.08568},
  year={2023}
}
Downloads last month
16
Safetensors
Model size
33.3B params
Tensor type
BF16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Evaluation results