Edit model card

Wernicke-7B-v8

Wernicke-7B-v8 is a merge of the following models using LazyMergekit:

🧩 Configuration

models:
  - model: CultriX/Wernicke-7B-v1
    # No parameters necessary for base model
  - model: kaitchup/Mayonnaise-4in1-022
    parameters:
      density: 0.53
      weight: 0.40
  - model: macadeliccc/WestLake-7B-v2-laser-truthy-dpo
    parameters:
      density: 0.53
      weight: 0.25
  - model: vanillaOVO/supermario_v2
    parameters:
      density: 0.53
      weight: 0.25
  - model: FelixChao/WestSeverus-7B-DPO-v2
    parameters:
      density: 0.53
      weight: 0.20
merge_method: dare_ties
base_model: CultriX/Wernicke-7B-v1
parameters:
  int8_mask: true
dtype: float16

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "CultriX/Wernicke-7B-v8"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
Downloads last month
555
Safetensors
Model size
7.24B params
Tensor type
FP16
Β·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for CultriX/Wernicke-7B-v8