test / README.md
Cuma's picture
End of training
09b6742 verified
metadata
library_name: transformers
license: mit
base_model: nielsr/lilt-xlm-roberta-base
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: test
    results: []

test

This model is a fine-tuned version of nielsr/lilt-xlm-roberta-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.6605
  • Precision: 0.7460
  • Recall: 0.7692
  • F1: 0.7575
  • Accuracy: 0.7526

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 30

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.3333 100 1.0907 0.4971 0.6210 0.5522 0.5889
No log 2.6667 200 0.7374 0.6135 0.6857 0.6476 0.7475
No log 4.0 300 0.8119 0.6292 0.7193 0.6713 0.7490
No log 5.3333 400 0.8152 0.6930 0.7555 0.7229 0.7616
0.6197 6.6667 500 0.9915 0.6824 0.7682 0.7227 0.7458
0.6197 8.0 600 1.0589 0.6952 0.7809 0.7356 0.7680
0.6197 9.3333 700 1.1514 0.7072 0.7285 0.7177 0.7456
0.6197 10.6667 800 1.1828 0.7190 0.7652 0.7414 0.7625
0.6197 12.0 900 1.2011 0.7301 0.7606 0.7450 0.7679
0.0998 13.3333 1000 1.2323 0.7347 0.7662 0.7501 0.7622
0.0998 14.6667 1100 1.3060 0.7413 0.7881 0.7640 0.7688
0.0998 16.0 1200 1.3649 0.7337 0.7636 0.7484 0.7647
0.0998 17.3333 1300 1.3661 0.7319 0.7789 0.7547 0.7685
0.0998 18.6667 1400 1.4831 0.7386 0.7672 0.7526 0.7635
0.0226 20.0 1500 1.4216 0.7299 0.7682 0.7486 0.7654
0.0226 21.3333 1600 1.5146 0.7295 0.7733 0.7507 0.7539
0.0226 22.6667 1700 1.6595 0.7398 0.7748 0.7569 0.7476
0.0226 24.0 1800 1.5785 0.7609 0.7702 0.7656 0.7677
0.0226 25.3333 1900 1.5824 0.7544 0.7886 0.7711 0.7587
0.0057 26.6667 2000 1.6605 0.7460 0.7692 0.7575 0.7526
0.0057 28.0 2100 1.6459 0.7396 0.7697 0.7544 0.7520
0.0057 29.3333 2200 1.6605 0.7467 0.7748 0.7605 0.7541

Framework versions

  • Transformers 4.44.2
  • Pytorch 2.4.1+cpu
  • Datasets 3.0.0
  • Tokenizers 0.19.1