Built with Axolotl

See axolotl config

axolotl version: 0.3.0

base_model: Locutusque/TinyMistral-248M-v2.5
model_type: MistralForCausalLM
is_mistral_derived_model: true

load_in_8bit: false
load_in_4bit: false
strict: false

dataset_processes: 20

datasets:
  - path: epfl-llm/guidelines
    type: completion
    field: clean_text
  - path: JeanKaddour/minipile
    type: completion
    field: text
  
dataset_prepared_path: TinyMistral-FFT-data
val_set_size: 0.001
output_dir: ./TinyMistral-FFT

sequence_len: 2048
sample_packing: false
pad_to_sequence_len: true

adapter:
lora_model_dir:
lora_r:
lora_alpha:
lora_dropout:
lora_target_linear:
lora_fan_in_fan_out:

# wandb configuration
wandb_project: TinyMistral-FFT
wandb_watch:
wandb_run_id:
wandb_log_model: 

gradient_accumulation_steps: 2
micro_batch_size: 4
num_epochs: 1
optimizer: paged_adamw_32bit
lr_scheduler: constant
cosine_min_lr_ratio: 

learning_rate: 0.00005

train_on_inputs: true
group_by_length: false
bf16: true
fp16: false
tf32: false

gradient_checkpointing: false
early_stopping_patience:
resume_from_checkpoint:
auto_resume_from_checkpoints: True
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
flash_attn_cross_entropy: false
flash_attn_rms_norm: true
flash_attn_fuse_qkv: false
flash_attn_fuse_mlp: true

warmup_steps: 10
evals_per_epoch: 100
# eval_steps: 10
eval_table_size:
saves_per_epoch: 50
debug:
deepspeed: #deepspeed/zero2.json # multi-gpu only
weight_decay: 0

# tokens:


special_tokens:
  bos_token: "<|bos|>"
  eos_token: "<|endoftext|>"
  unk_token: "<unk>"

TinyMistral-StructureEvaluator

This model was further trained on the epfl-llm/guidelines and JeanKaddour/minipile datasets for 1 epoch.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: constant
  • training_steps: 197279

Training results

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.0.1+cu117
  • Datasets 2.15.0
  • Tokenizers 0.15.0
Downloads last month
21
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Dans-DiscountModels/TinyMistral-v2.5-MiniPile-Guidelines-E1

Finetuned
(2)
this model
Finetunes
1 model

Datasets used to train Dans-DiscountModels/TinyMistral-v2.5-MiniPile-Guidelines-E1