TinyLlama-repeat / README.md
leaderboard-pr-bot's picture
Adding Evaluation Results
aa69000 verified
|
raw
history blame
7.42 kB
metadata
language:
  - en
license: apache-2.0
datasets:
  - cerebras/SlimPajama-627B
  - bigcode/starcoderdata
  - HuggingFaceH4/ultrachat_200k
  - HuggingFaceH4/ultrafeedback_binarized
widget:
  - text: >
      <|system|>

      You are a chatbot who can help code!</s>

      <|user|>

      Write out the first 10 digits of the fibonacci sequence in Python and
      print it out to the CLI.</s>

      <|assistant|>
model-index:
  - name: TinyLlama-repeat
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 35.24
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Deathsquad10/TinyLlama-repeat
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 60.25
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Deathsquad10/TinyLlama-repeat
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 26.07
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Deathsquad10/TinyLlama-repeat
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 38.78
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Deathsquad10/TinyLlama-repeat
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 60.46
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Deathsquad10/TinyLlama-repeat
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 1.74
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Deathsquad10/TinyLlama-repeat
          name: Open LLM Leaderboard

TinyLlama-1.1B ---My personal Test update Version 2

Tasks Version Filter n-shot Metric Value Stderr
arc_challenge Yaml none 0 acc 0.3046 ± 0.0134
none 0 acc_norm 0.3234 ± 0.0137
arc_easy Yaml none 0 acc 0.6077 ± 0.0100
none 0 acc_norm 0.5307 ± 0.0102
boolq Yaml none 0 acc 0.5948 ± 0.0086
hellaswag Yaml none 0 acc 0.4601 ± 0.0050
none 0 acc_norm 0.5987 ± 0.0049
openbookqa Yaml none 0 acc 0.2420 ± 0.0192
none 0 acc_norm 0.3500 ± 0.0214
piqa Yaml none 0 acc 0.7410 ± 0.0102
none 0 acc_norm 0.7405 ± 0.0102
winogrande Yaml none 0 acc 0.6093 ± 0.0137

https://github.com/jzhang38/TinyLlama

The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs 🚀🚀. The training has started on 2023-09-01.

We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.

This Model

This is the chat model finetuned on top of TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T. We follow HF's Zephyr's training recipe. The model was " initially fine-tuned on a variant of the UltraChat dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT. We then further aligned the model with 🤗 TRL's DPOTrainer on the openbmb/UltraFeedback dataset, which contain 64k prompts and model completions that are ranked by GPT-4."

How to use

You will need the transformers>=4.34 Do check the TinyLlama github page for more information.

# Install transformers from source - only needed for versions <= v4.34
# pip install git+https://github.com/huggingface/transformers.git
# pip install accelerate
import torch
from transformers import pipeline
pipe = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", torch_dtype=torch.bfloat16, device_map="auto")
# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
messages = [
    {
        "role": "system",
        "content": "You are a friendly chatbot who always responds in the style of a pirate",
    },
    {"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
# <|system|>
# You are a friendly chatbot who always responds in the style of a pirate.</s>
# <|user|>
# How many helicopters can a human eat in one sitting?</s>
# <|assistant|>
# ...

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 37.09
AI2 Reasoning Challenge (25-Shot) 35.24
HellaSwag (10-Shot) 60.25
MMLU (5-Shot) 26.07
TruthfulQA (0-shot) 38.78
Winogrande (5-shot) 60.46
GSM8k (5-shot) 1.74