Den4ikAI/FRED-T5-XL_instructor
Инструкционная модель на FRED-T5-XL.
Пример использования
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
import torch
use_cuda = torch.cuda.is_available()
device = torch.device("cuda" if use_cuda else "cpu")
tokenizer = AutoTokenizer.from_pretrained("Den4ikAI/FRED-T5-XL_instructor")
model = AutoModelForSeq2SeqLM.from_pretrained("Den4ikAI/FRED-T5-XL_instructor", torch_dtype=torch.float16).to(device)
model.eval()
from transformers import GenerationConfig
generation_config = GenerationConfig.from_pretrained("Den4ikAI/FRED-T5-XL_instructor")
def generate(prompt):
data = tokenizer(f"<SC6>Человек: {prompt}\nБот: <extra_id_0>", return_tensors="pt").to(model.device)
output_ids = model.generate(
**data,
generation_config=generation_config
)[0]
out = tokenizer.decode(output_ids.tolist())
return out
while 1:
print(generate(input(":> ")))
Citation
@MISC{Den4ikAI/FRED-T5-XL_instructor,
author = {Denis Petrov},
title = {Russian Instructor Model},
url = {https://huggingface.co/Den4ikAI/FRED-T5-XL_instructor/},
year = 2023
}
- Downloads last month
- 19
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.