|
--- |
|
license: mit |
|
tags: |
|
- generated_from_trainer |
|
model-index: |
|
- name: roberta-base-finetuned-WikiNeural |
|
results: [] |
|
datasets: |
|
- Babelscape/wikineural |
|
language: |
|
- en |
|
metrics: |
|
- accuracy |
|
- f1 |
|
- precision |
|
- recall |
|
- seqeval |
|
pipeline_tag: token-classification |
|
--- |
|
|
|
# roberta-base-finetuned-WikiNeural |
|
|
|
This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base). |
|
|
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0871 |
|
- Loc |
|
- Precision: 0.9276567437219359 |
|
- Recall: 0.9366918555835433 |
|
- F1: 0.9321524064171123 |
|
- Number: 5955 |
|
- Misc |
|
- Precision: 0.8334231805929919 |
|
- Recall: 0.916419679905157 |
|
- F1: 0.872953133822699 |
|
- Number: 5061 |
|
- Org |
|
- Precision: 0.9296179258833669 |
|
- Recall: 0.9382429689765149 |
|
- F1: 0.9339105339105339 |
|
- Number: 3449 |
|
- Per |
|
- Precision: 0.9688723570869224 |
|
- Recall: 0.9499040307101727 |
|
- F1: 0.9592944369063772 |
|
- Number: 5210 |
|
- Overall |
|
- Precision: 0.9124 |
|
- Recall: 0.9352 |
|
- F1: 0.9237 |
|
- Accuracy: 0.9910 |
|
|
|
## Model description |
|
|
|
For more information on how it was created, check out the following link: https://github.com/DunnBC22/NLP_Projects/blob/main/Token%20Classification/Monolingual/WikiNeural%20-%20Transformer%20Comparison/POS%20Project%20with%20Wikineural%20Dataset%20-%20Roberta-Base%20Transformer.ipynb |
|
|
|
## Intended uses & limitations |
|
|
|
This model is intended to demonstrate my ability to solve a complex problem using technology. |
|
|
|
## Training and evaluation data |
|
|
|
Dataset Source: https://huggingface.co/datasets/Babelscape/wikineural |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 2 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Loc Precision | Loc Recall | Loc F1 | Loc Number | Misc Precision | Misc Recall | Misc F1 | Misc Number | Org Precision | Org Recall | Org F1 | Org Number | Per Precision | Per Recall | Per F1 | Per Number | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy | |
|
|:-------------:|:-----:|:-----:|:----------:|:-----------:|:------------:|:------------:|:------------:|:-----------------:|:--------------:|:----------:|:--------:|:----------:|:--------:|:----------:|:--------:|:----------:|:--------:|:----------:|:--------:|:----------:|:--------:|:----------:|:--------:| |
|
| 0.1086 | 1.0 | 5795 | 0.1001 | 0.9149 | 0.9333 | 0.9240 | 5955 | 0.8158 | 0.9030 | 0.8572 | 5061 | 0.9134 | 0.9295 | 0.9214 | 3449 | 0.9642 | 0.9461 | 0.9550 | 5210 | 0.8997 | 0.9282 | 0.9137 | 0.9896 | |
|
| 0.0727 | 2.0 | 11590 | 0.0871 | 0.9277 | 0.9367 | 0.9325 | 5955 | 0.8334 | 0.9164 | 0.8730 | 5061 | 0.9296 | 0.9382 | 0.9339 | 3449 | 0.9689 | 0.9499 | 0.9593 | 5210 | 0.9124 | 0.9352 | 0.9237 | 0.9910 | |
|
|
|
* All values in the cahrt above are rounded to the nearest ten-thousandths. |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.1 |
|
- Pytorch 2.0.1 |
|
- Datasets 2.13.0 |
|
- Tokenizers 0.13.3 |