|
import argparse |
|
import functools |
|
import os |
|
|
|
from transformers import WhisperForConditionalGeneration, WhisperFeatureExtractor, WhisperTokenizerFast,\ |
|
WhisperProcessor |
|
from peft import PeftModel, PeftConfig |
|
from utils.utils import print_arguments, add_arguments |
|
|
|
parser = argparse.ArgumentParser(description=__doc__) |
|
add_arg = functools.partial(add_arguments, argparser=parser) |
|
add_arg("lora_model", type=str, default="output/whisper-tiny/checkpoint-best/", help="微调保存的模型路径") |
|
add_arg('output_dir', type=str, default='models/', help="合并模型的保存目录") |
|
add_arg("local_files_only", type=bool, default=False, help="是否只在本地加载模型,不尝试下载") |
|
args = parser.parse_args() |
|
print_arguments(args) |
|
|
|
assert os.path.exists(args.lora_model), f"模型文件{args.lora_model}不存在" |
|
|
|
peft_config = PeftConfig.from_pretrained(args.lora_model) |
|
|
|
base_model = WhisperForConditionalGeneration.from_pretrained(peft_config.base_model_name_or_path, device_map={"": "cpu"}, |
|
local_files_only=args.local_files_only) |
|
|
|
model = PeftModel.from_pretrained(base_model, args.lora_model, local_files_only=args.local_files_only) |
|
feature_extractor = WhisperFeatureExtractor.from_pretrained(peft_config.base_model_name_or_path, |
|
local_files_only=args.local_files_only) |
|
tokenizer = WhisperTokenizerFast.from_pretrained(peft_config.base_model_name_or_path, |
|
local_files_only=args.local_files_only) |
|
processor = WhisperProcessor.from_pretrained(peft_config.base_model_name_or_path, |
|
local_files_only=args.local_files_only) |
|
|
|
|
|
model = model.merge_and_unload() |
|
model.train(False) |
|
|
|
save_directory = os.path.join(args.output_dir, f'{os.path.basename(peft_config.base_model_name_or_path)}-finetune') |
|
os.makedirs(save_directory, exist_ok=True) |
|
|
|
model.save_pretrained(save_directory) |
|
feature_extractor.save_pretrained(save_directory) |
|
tokenizer.save_pretrained(save_directory) |
|
processor.save_pretrained(save_directory) |
|
print(f'合并模型保持在:{save_directory}') |