See axolotl config
axolotl version: 0.5.2
base_model: ./pleias_erebus
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer
load_in_8bit: false
load_in_4bit: false
strict: false
#datasets:
# - path: Mielikki/Erebus-87k
# type: completion
# field: body
# - path: allura-org/r_shortstories_24k
# type: completion
# field: text
datasets:
- path: Gryphe/Sonnet3.5-SlimOrcaDedupCleaned-20k
- path: anthracite-org/kalo-opus-instruct-22k-no-refusal
- path: anthracite-org/kalo_misc_part2
- path: anthracite-org/kalo_opus_misc_240827
- path: Nitral-AI/Olympiad_Math-ShareGPT
- path: Nitral-AI/Cybersecurity-ShareGPT
- path: Nitral-AI/Medical_Instruct-ShareGPT
- path: NewEden/Claude-Instruct-2.7K
- path: NewEden/Claude-Instruct-5K
dataset_config:
type: chat_template
field_messages: conversations
message_field_role: from
message_field_content: value
roles_to_train: ["gpt"]
train_on_eos: "turn"
#chat_template: jinja
#chat_template_jinja: "{{ bos_token }}{% for message in messages %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|START_OF_TURN_TOKEN|><|USER_TOKEN|>' + content + '<|END_OF_TURN_TOKEN|>' }}{% elif message['role'] == 'assistant' %}{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' + content + '<|END_OF_TURN_TOKEN|>' }}{% elif message['role'] == 'system' %}{{ '<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' + content + '<|END_OF_TURN_TOKEN|>' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' }}{% endif %}"
chat_template: chatml
output_dir: ./pleias_outputs
sequence_len: 8192
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true
wandb_project: Pleias-Baldur
wandb_entity:
wandb_watch:
wandb_name: run-2
wandb_log_model:
plugins:
- axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_layer_norm: true
liger_swiglu: true
liger_fused_linear_cross_entropy: true
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 3
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 8e-5
train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false
#gradient_checkpointing: unsloth
gradient_checkpointing: true
gradient_checkpointing_kwargs:
use_reentrant: false
early_stopping_patience:
resume_from_checkpoint:
#auto_resume_from_checkpoints: true
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true
warmup_steps: 25
evals_per_epoch: 2
eval_table_size:
eval_max_new_tokens: 128
saves_per_epoch: 1
weight_decay: 0.02
debug:
#deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16_cpuoffload_params.json
deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16.json
#deepspeed: /workspace/axolotl/deepspeed_configs/zero2.json
fsdp:
fsdp_config:
special_tokens:
bos_token: '<|begin_of_text|>'
eos_token: '<|end_of_text|>'
pad_token: '[PAD]'
pleias_outputs
This model was trained from scratch on the None dataset.
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 8e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 4
- total_train_batch_size: 32
- total_eval_batch_size: 8
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 25
- num_epochs: 3
Training results
Framework versions
- Transformers 4.46.3
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3
- Downloads last month
- 2
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.