Built with Axolotl

See axolotl config

axolotl version: 0.5.0

#base_model: unsloth/Llama-3.2-3B
#base_model: anthracite-core/llama3.2-3b-chatml-v2
base_model: NewEden/L3.2-Erebus-Base
model_type: AutoModelForCausalLM
tokenizer_type: AutoTokenizer

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: NewEden/Claude-Instruct-5K
    type: chat_template
    chat_template: chatml
    roles_to_train: ["gpt"]
    field_messages: conversations
    message_field_role: from
    message_field_content: value
    train_on_eos: turn
  - path: NewEden/Claude-Instruct-2.7K
    type: chat_template
    chat_template: chatml
    roles_to_train: ["gpt"]
    field_messages: conversations
    message_field_role: from
    message_field_content: value
    train_on_eos: turn
  - path: anthracite-org/kalo-opus-instruct-22k-no-refusal
    type: chat_template
    chat_template: chatml
    roles_to_train: ["gpt"]
    field_messages: conversations
    message_field_role: from
    message_field_content: value
    train_on_eos: turn

chat_template: chatml
shuffle_merged_datasets: true
default_system_message: "Currently, your role is {{char}}, described in detail below. As {{char}}, continue the narrative exchange with {{user}}.\n\n<Guidelines>\n• Maintain the character persona but allow it to evolve with the story.\n• Be creative and proactive. Drive the story forward, introducing plotlines and events when relevant.\n• All types of outputs are encouraged; respond accordingly to the narrative.\n• Include dialogues, actions, and thoughts in each response.\n• Utilize all five senses to describe scenarios within {{char}}'s dialogue.\n• Use emotional symbols such as \"!\" and \"~\" in appropriate contexts.\n• Incorporate onomatopoeia when suitable.\n• Allow time for {{user}} to respond with their own input, respecting their agency.\n• Act as secondary characters and NPCs as needed, and remove them when appropriate.\n• When prompted for an Out of Character [OOC:] reply, answer neutrally and in plaintext, not as {{char}}.\n</Guidelines>\n\n<Forbidden>\n• Using excessive literary embellishments and purple prose unless dictated by {{char}}'s persona.\n• Writing for, speaking, thinking, acting, or replying as {{user}} in your response.\n• Repetitive and monotonous outputs.\n• Positivity bias in your replies.\n• Being overly extreme or NSFW when the narrative context is inappropriate.\n</Forbidden>\n\nFollow the instructions in <Guidelines></Guidelines>, avoiding the items listed in <Forbidden></Forbidden>."
dataset_prepared_path: 4b-erebus-lora
val_set_size: 0.0
output_dir: 4b-erebus-rslora-out

plugins:
  - axolotl.integrations.liger.LigerPlugin
liger_rope: true
liger_rms_norm: true
liger_swiglu: true
liger_cross_entropy: false
liger_fused_linear_cross_entropy: true

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true

wandb_project: 4b-erebus
wandb_entity:
wandb_watch:
wandb_name: base-attempt-01
wandb_log_model:

gradient_accumulation_steps: 16
micro_batch_size: 1
num_epochs: 2
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.0001

train_on_inputs: false
group_by_length: false
bf16: auto
fp16:
tf32: false

gradient_checkpointing: unsloth
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 40
evals_per_epoch:
eval_table_size:
eval_max_new_tokens:
saves_per_epoch: 2
debug:
#deepspeed: /workspace/axolotl/deepspeed_configs/zero3_bf16_cpuoffload_params.json
weight_decay: 0.01
fsdp:
fsdp_config:
special_tokens:
  pad_token: <|finetune_right_pad_id|>
  eos_token: <|eot_id|>

4b-erebus-rslora-out

This model is a fine-tuned version of NewEden/L3.2-Erebus-Base on the None dataset.

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 16
  • optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 40
  • num_epochs: 2

Training results

Framework versions

  • Transformers 4.46.1
  • Pytorch 2.3.1+cu121
  • Datasets 3.0.1
  • Tokenizers 0.20.3
Downloads last month
18
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Edens-Gate/holland-v2-erebus-experimental

Finetuned
(1)
this model
Quantizations
1 model